Skip to main content
Log in

Comparison of halogen bonds in MXN contacts (M=C, Si, Ge and X=Cl, Br)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The halogen bonds (XB) formed between some Si−X- and Ge−X- (X is Cl and Br) containing molecules and NCH (as a Lewis base) have been investigated and compared with C−X⋯N halogen bond. Although, in all cases, the existence of a positive electrostatic potential (σ-hole) along the extension of M−X was responsible for halogen bond formation, multipole expansion of electrostatic potential reveals that these positive potentials originate from different atomic multipole moments. Indeed, in addition to the monopole moment of M atoms, the quadrupole moment of X in C−X molecules, the dipole moment of the halogen in Si−X molecules and both the dipole and quadrupole moments of X in Ge−X molecules are mainly responsible for the existence of the σ-hole along the extension of the M−X bond. From a different point of view, the distribution of the Laplacian of electron density shows that all the studied M−X⋯N halogen bonds can be regarded as “lump-hole” interactions; a region of charge depletion (hole) in the valence shell charge concentration (VSCC) of the halogen atom interacts with a region of charge concentration (lump) in the VSCC of nitrogen and forms a halogen bond. On the other hand, interacting quantum atoms (IQA) analysis of atomic energies indicates that, in contrast to C−X⋯N contacts, in which the interaction between halogen and nitrogen is attractive, there is a net repulsive interaction between X and N in Si−X⋯N and Ge−X⋯N complexes. Indeed, the attraction between Si/Ge and nitrogen is mainly responsible for the formation of these halogen bonds.

Contour map of the Laplacian of the electron density (∇2 ρ) of FCGeBr. The arrow indicates the hole in the valence shell charge concentration of bromine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–d

Similar content being viewed by others

References

  1. Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl Chem 85(8):1711–1713

    Article  CAS  Google Scholar 

  2. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci USA 101:16789–16794

  3. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem 112(10):1852–1856

    Article  Google Scholar 

  4. Crihfield A, Hartwell J, Phelps D, Walsh RB, Harris JL, Payne JF, Pennington WT, Hanks TW (2003) Crystal engineering through halogen bonding. 2. Complexes of diacetylene-linked heterocycles with organic iodides. Cryst Growth Des 3:313–320

  5. Himmel DM, Das K, Clark AD, Hughes SH, Benjahad A, Oumouch S, Guillemont J, Coupa S, Poncelet A, Csoka I, Meyer C, Andries K, Nguyen HL, Grierson DS, Arnold E (2005) Crystal structures for HIV-1 reverse transcriptase in complexes with three pyridinone derivatives: a new class of non-nucleoside inhibitors effective against a broad range of drug-resistant strains. J Med Chem 48:7582–7591

  6. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

  7. Moorthy JN, Venkatakrishnan P, Mal P, Dixit S, Venugopalan P (2003) Crystal engineering: identification of a unique supramolecular synthon based on CO···X interaction in halogen-substituted aromatic carboxaldehydes. Cryst Growth Des 3:581–585

  8. Nguyen HL, Horton PN, Hursthouse MB, Legon AC, Bruce W (2004) Halogen bonding: a new interaction for liquid crystal formation. J Am Chem Soc 126:16–17

  9. Syzgantseva OA, Tognetti V, Joubert L (2013) On the physical nature of halogen bonds: a QTAIM study. J Phys Chem A 117(36):8969–8980

    Article  CAS  Google Scholar 

  10. Jahromi H, Eskandari K (2013) Halogen bonding: a theoretical study based on atomic multipoles derived from quantum theory of atoms in molecules. Struct Chem 24(4):1281–1287

    Article  CAS  Google Scholar 

  11. Torii H, Yoshida M (2010) Properties of halogen atoms for representing intermolecular electrostatic interactions related to halogen bonding and their substituent effects. J Comput Chem 31(1):107–116

    Article  CAS  Google Scholar 

  12. Legon AC (2010) The halogen bond: an interim perspective. Phys Chem Chem Phys 12(28):7736–7747

    Article  CAS  Google Scholar 

  13. Eskandari K, Zariny H (2010) Halogen bonding: a lump–hole interaction. Chem Phys Lett 492:9–13

    Article  CAS  Google Scholar 

  14. Murray JS, Lane P, Politzer P (2009) Expansion of the σ-hole concept. J Mol Model 15(6):723–729

    Article  CAS  Google Scholar 

  15. Bui TTT, Dahaoui S, Lecomte C, Desiraju GR, Espinosa E (2009) The nature of halogen⋅⋅⋅ halogen interactions: a model derived from experimental charge-density analysis. Angew Chem Int Ed 48(21):3838–3841

    Article  CAS  Google Scholar 

  16. Politzer P, Murray JS, Concha MC (2007) σ‐Hole bonding between like atoms: a fallacy of atomic charges. J Mol Model 13:643–650

  17. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311

  18. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ‐hole. J Mol Model 13:291–296

  19. Zou JW, Lu YX, Yu QS, Zhang HX, Jiang YJ (2006) Halogen bonding: an AIM analysis of the weak interactions. Chin J Chem 24(12):1709–1715

    Article  CAS  Google Scholar 

  20. Torii H (2003) The role of atomic quadrupoles in intermolecular electrostatic interactions of polar and nonpolar molecules. J Chem Phys 119(4):2192–2198

  21. Wang C, Danovich D, Mo Y, Shaik S (2014) On the nature of the halogen bond. J Chem Theory Comput 10:3226–3237

    Google Scholar 

  22. Donald KJ, Wittmaack BK, Crigger C (2010) Tuning σ-holes: charge redistribution in the heavy (group 14) analogues of simple and mixed halomethanes can impose strong propensities for halogen bonding. J Phys Chem A 114(26):7213–7222

    Article  CAS  Google Scholar 

  23. Bundhun A, Ramasami P, Murray JS, Politzer P (2013) Trends in σ-hole strengths and interactions of F3MX molecules (M= C, Si, Ge and X= F, Cl, Br, I). J Mol Model 19(7):2739–2746

    Article  CAS  Google Scholar 

  24. Schmidt MWBK, Boatz LA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

  25. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  26. Keith TA (2014) AIMAll (version 14.06.21), TK Gristmill Software. Overland Park KS

  27. Graña MA, Mosquera RA (1999) The transferability of the carbonyl group in aldehydes andketones. J Chem Phys 110:6606–6616

  28. Vila A, Mosquera RA (2001) Transferability in alkyl monoethers. II. Methyl and methylene fragments. J Chem Phys 115:1264–1273

  29. Popelier P (2000) Atoms in molecules, an Introduction. Prentice Hall, Harlow

    Google Scholar 

  30. Bader RF, Gatti C (1998) A Green’s function for the density. Chem Phys Lett 287(3):233–238

    Article  CAS  Google Scholar 

  31. Gatti C, Cargnoni F, Bertini L (2003) Chemical information from the source function. J Comput Chem 24(4):422–436

    Article  CAS  Google Scholar 

  32. Eskandari K, Lesani M (2015) Does fluorine participate in halogen bonding? Chem A Eur J 21(12):4739–4746

    Article  CAS  Google Scholar 

  33. Blanco M, Martín Pendás A, Francisco E (2005) Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J Chem Theory Comput 1(6):1096–1109

    Article  CAS  Google Scholar 

  34. Pendás AM, Blanco M, Francisco E (2004) Two-electron integrations in the quantum theory of atoms in molecules. J Chem Phys 120(10):4581–4592

    Article  Google Scholar 

  35. Clark T (2013) σ-Holes. Wiley Interdiscip Rev Comput Mol Sci 3(1):13–20

    Article  CAS  Google Scholar 

  36. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15(27):11178–11189

    Article  CAS  Google Scholar 

  37. Politzer P, Murray JS (2013) Halogen bonding: an interim discussion. ChemPhysChem 14(2):278–294

    Article  CAS  Google Scholar 

  38. Coppens P (1997) X-ray charge density analysis and chemical bonding. Oxford University Press, Oxford

    Google Scholar 

  39. Koster A, Leboeuf M, Salahub D (1996) In: Murray JS, Sen K (eds) Molecular electrostatic potentials: concepts and applications, vol 3. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

This paper was extracted from a research project entitled Electron Density and It’s Laplacian in Halogen bonds of Ge-X and Si-X Containing Molecules (X= F, Cl, Br). Financial assistance from the Mahshahr Branch, Islamic Azad University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Jalali Jahromi or Kiamars Eskandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahromi, H.J., Eskandari, K. & Alizadeh, A. Comparison of halogen bonds in MXN contacts (M=C, Si, Ge and X=Cl, Br). J Mol Model 21, 112 (2015). https://doi.org/10.1007/s00894-015-2660-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2660-y

Keywords

Navigation