Skip to main content
Log in

Mechanical properties of chiral and achiral silicon carbide nanotubes under oxygen chemisorption

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, the mechanical properties of fully oxygenated silicon carbide nanotubes (O2-SiCNTs) are explored using a molecular mechanics model joined with the density functional theory (DFT). The closed-form analytical expressions suggested in this study can easily be adapted for nanotubes with different chiralities. The force constants of molecular mechanics model proposed herein are derived through DFT within a generalized gradient approximation. Moreover, the mechanical properties of fully oxygenated silicon carbide (O2-SiC) sheet are evaluated for the case that the oxygen atoms are adsorbed on one side of the SiC sheet. According to the results obtained for the bending stiffness of O2-SiC sheet, one can conclude that the O2-SiC sheet has isotropic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choyke WJ, Matsunami H, Pensl G (2004) Silicon carbide: recent major advances. Springer, Berlin

  2. Chelnokov VE, Syrkin AL (1997) High temperature electronics using SiC: actual situation and unsolved problems. Mater Sci Eng B 46:248–2531997

    Article  Google Scholar 

  3. Porter LM, Davis RF (1995) A critical review of ohmic and rectifying contacts for silicon carbide. Mater Sci Eng B 34:83–105

    Article  Google Scholar 

  4. Huang HC, Ghoniem N (1993) Neutron displacement damage cross sections for SiC. J Nuclea Mate 199:221–230

    Article  CAS  Google Scholar 

  5. Yang W, Araki H, Tang C, Thaveethavorn S, Kohyama A, Suzuki H, Noda T (2005) Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv Mater 17:1519–1523

    Article  CAS  Google Scholar 

  6. Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BT (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471

    Article  CAS  Google Scholar 

  7. Miyamoto Y, Yu BD (2002) Computational designing of graphitic silicon carbide and its tubular forms. Appl Phys Lett 80:586–588

    Article  CAS  Google Scholar 

  8. Mavrandonakis A, Froudakis GE, Schnell M, Mühlhäuser M (2003) From pure carbon to silicon−carbon nanotubes: an ab-initio study. Nano Lett 3:148–1484

    Article  Google Scholar 

  9. Menon M, Richter E, Mavrandonakis A, Froudakis G, Andriotis AN (2004) Structure and stability of SiC nanotubes. Phys Rev B 69:115322–115325

    Article  Google Scholar 

  10. Baumeier B, Kruger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76:085407–085416

    Article  Google Scholar 

  11. Mpourmpakis G, Froudakis G, Lithoxoos G, Samios J (2006) SiC Nanotubes: a novel material for hydrogen storage. Nano Lett 6:1581–1583

    Article  CAS  Google Scholar 

  12. Gali A (2006) Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys Rev B 73:245415–245423

    Article  Google Scholar 

  13. Shen H (2007) MD simulations on the melting and compression of C, SiC and Si nanotubes. J Mater Sci 42:6382–6387

    Article  CAS  Google Scholar 

  14. Huang SP, Wu DS, Hu JM, Zhang H, Xie Z, Hu H, Chen WD (2007) First-principles study: size- dependent optical properties for semiconducting silicon carbide nanotubes. Opt Express 15:10947–10957

    Article  CAS  Google Scholar 

  15. He RA, Chu ZY, Li XD, Si YM (2008) Synthesis and hydrogen storage capacity of SiC nanotube. Key Eng Mater 368–372:647–649

    Article  Google Scholar 

  16. Wu IJ, Guo GY (2007) Optical properties of SiC nanotubes: an ab initio study. Phys Rev B 76:035343–035351

    Article  Google Scholar 

  17. Wu IJ, Guo GY (2008) Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes. Phys Rev B 78:035447–035456

    Article  Google Scholar 

  18. Zhang JM, Chen LY, Wang SF, Xu KW (2010) Comparison of the structural, electronic and magnetic properties of Fe, Co and Ni nanowires encapsulated into silicon carbide nanotube. Eur Phys J Cond Mat Comp Syst 73:555–561

    CAS  Google Scholar 

  19. Zheng B, Lowther JE (2010) Numerical investigations into mechanical properties of hexagonal silicon carbon nanowires and nanotubes. Nanoscale 2:1733–1739

    Article  CAS  Google Scholar 

  20. Huda MN (2014) SiC nanostructures from a theoretical perspective. Rev Nanosci Nanotechnol 3:88–106

    Article  Google Scholar 

  21. Khani N, Fakhrabadi MMS, Vahabi M, Kamkari B (2014) Modal analysis of silicon carbide nanotubes using structural mechanics. Appl Phys A 116:1687–1694

    Article  CAS  Google Scholar 

  22. Xu B, Ouyang J, Xu Y, Wu MS, Liu G, Ouyang CY (2013) The structural, mechanical and electronic properties of (4, 4) SiC/C nanotube heterojunction: a first-principles study. Comput Mat Sci 68:367–370

    Article  CAS  Google Scholar 

  23. Dai J, Chen D, Li Q (2014) First-principle study on the X (X = N, P, As, Sb) doped (9.0) single-walled SiC nanotubes. Phys Cond Mat 447:56–61

    Article  CAS  Google Scholar 

  24. Andrievski RA (2009) Nano-sized silicon carbide: synthesis, structure and properties. Rus Chem Rev 78:821–831

    Article  CAS  Google Scholar 

  25. Alfieri G, Kimoto T (2014) Ab initio prediction of SiC nanotubes with negative strain energy. Appl Phys Lett 104:033107

    Article  Google Scholar 

  26. Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes – molecular dynamics simulations. Comput Mat Sci 43:664–669

    Article  CAS  Google Scholar 

  27. Akbarpour MR, Salahi E, Alikhani Hesari F, Simchib A, Kim HS (2013) Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes. Mater Sci Eng A 572:83–90

    Article  CAS  Google Scholar 

  28. Joshi R, Engstler J, Haridoss P, Schneider JJ (2009) Formation of carbon nanotubes from a silicon carbide/carbon composite. Solid State Sci 11:422–427

    Article  CAS  Google Scholar 

  29. Keller N, Pham-Huu C, Ehret G, Keller V, Ledoux MJ (2003) Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon 41:2131–2139

    Article  CAS  Google Scholar 

  30. Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005) Synthesis of silicon carbide nanotubes. J Am Ceram Soc 88:459–461

    Article  CAS  Google Scholar 

  31. Szabó Á, Gali A (2009) Effect of oxygen on single-wall silicon carbide nanotubes studied by first-principles calculations. Phys Rev B 80:075425–075431

    Article  Google Scholar 

  32. Cao F, Xu X, Ren W, Zhao C (2010) Theoretical study of O2 molecular adsorption and dissociation on silicon carbide nanotubes. J Phys Chem C 114:970–976

    Article  CAS  Google Scholar 

  33. Ganji MD, Ahaz B (2010) First principles simulation of molecular oxygen adsorption on SiC nanotubes. Commun Theor Phys 53:742–748

    Article  CAS  Google Scholar 

  34. Sun QP, Tong P. IUTAM symposium on size effects on material and structural behavior at microns and nanoscales, solid mechanics and its applications, Springer

  35. Mirnezhad M, Ansari R, Rouhi H (2012) Effects of hydrogen adsorption on mechanical properties of chiral single-walled zinc oxide nanotubes. J Appl Phys 111:014308–014318

    Article  Google Scholar 

  36. Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solid 51:1059–1074

    Article  CAS  Google Scholar 

  37. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  38. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  39. Baroni S, Corso DA, Gironcoli S, Giannozzi P, Cavazzoni C, Ballabio G, Scandolo S, Chiarotti G, Focher P, Pasquarello A, Laasonen K, Trave A, Car R, Marzari N, Kokalj A, http://www.pwscf.org/

  40. Topsakal M, Cahangirov S, Ciraci S (2010) The response of mechanical and electronic properties of graphane to the elastic strain. Appl Phys Lett 96:091912

    Article  Google Scholar 

  41. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or M. Hosseinzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Mirnezhad, M. & Hosseinzadeh, M. Mechanical properties of chiral and achiral silicon carbide nanotubes under oxygen chemisorption. J Mol Model 21, 51 (2015). https://doi.org/10.1007/s00894-015-2607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2607-3

Keywords

Navigation