Skip to main content
Log in

The structure of adsorbed cyclic chains

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In order to determine the structure of polymer films formed of cyclic chains (rings) we developed and studied a simple coarse-grained model. Our main goal was to check how the percolation and jamming thresholds in such a system were related to the thresholds obtained for linear flexible chains system, i.e., how the geometry of objects influenced both thresholds. All atomic details were suppressed and polymers were represented as a sequence of identical beads and the chains were embedded to a square lattice (a strictly 2D model). The system was athermal and the excluded volume was the only potential introduced. A random sequential adsorption algorithm was chosen to determine the properties of a polymer monolayer. It was shown that the percolation threshold of cyclic chains was considerably higher than those of linear flexible chains while the jamming thresholds for both chain architectures are very similar. The shape of adsorbed cyclic chains was found to be more prolate when compared to average single chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Semlyen JA (2000) Cyclic polymers, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  2. Roovers J (2013) Overview on physical properties of cyclic polymers. In: Tezuka Y (ed) Topological polymer chemistry progress of cyclic polymers in syntheses. Properties and Functions, World Scientific, Singapore

    Google Scholar 

  3. McLeish TCB (2008) Nat Mater 7:933–935

    Article  CAS  Google Scholar 

  4. Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M (2008) Nat Mater 7:997–1002

    Article  CAS  Google Scholar 

  5. Bielawski CW, Benitez D, Grubbs RH (2022) Science 297:2041–2044

    Article  Google Scholar 

  6. Beaucage G, Kulkarni AS (2010) Macromolecules 43:532–537

    Article  CAS  Google Scholar 

  7. Arrighi V, Gagliardi S, Dagger AC, Semlyen JA, Higgins JS, Shenton MJ (2004) Macromolecules 37:8057–8065

    Article  CAS  Google Scholar 

  8. Robertson RM, Smith DE (2007) Proc Natl Acad Sci U S A 104:4824–4837

    Article  CAS  Google Scholar 

  9. Baldelli Bombelli F, Gambinossi F, Lagi M, Berti D, Caminati G, Brown T, Sciortino F, Norden B, Baglioni P (2008) J Chem Phys B 112:15283–15294

    Article  CAS  Google Scholar 

  10. Obukhov SP, Rubinstein M, Duke T (1994) Phys Rev Lett 73:1263–1266

    Article  CAS  Google Scholar 

  11. Zifferer G, Preusser W (2001) Macromol Theory Simul 10:397–407

    Article  CAS  Google Scholar 

  12. Reiter J (1990) Macromolecules 23:3811–3816

    Article  CAS  Google Scholar 

  13. Bishop M, Saltiel CJ (1985) J Chem Phys 83:3976–3980

    Article  Google Scholar 

  14. Bishop M, Michels JPJ (1985) J Chem Phys 82:1059–1061

    Article  CAS  Google Scholar 

  15. Bishop M, Michels JPJ (1986) J Chem Phys 84:444–446

    Article  CAS  Google Scholar 

  16. Bishop M, Slatiel CJ (1986) J Chem Phys 85:6728–6731

    Article  CAS  Google Scholar 

  17. Suzuki J, Takano A, Matsushita Y (2008) J Chem Phys 129:034903

    Article  Google Scholar 

  18. Brown S, Szamel G (1998) J Chem Phys 108:4705–4708

    Article  CAS  Google Scholar 

  19. Brown S, Szamel G (1998) J Chem Phys 109:6184–6192

    Article  CAS  Google Scholar 

  20. Kanaeda N, Deguchi T (2008) J Phys A Math Theor 41:145004

    Article  Google Scholar 

  21. Brown S, Lenczycki T, Szamel G (2001) Phys Rev E 63:052801

    Article  CAS  Google Scholar 

  22. Vettorel A, Grossberg AY, Kremer K (2009) Phys Biol 6:025013

    Article  Google Scholar 

  23. Tsolou G, Stratikis N, Baig C, Stephanou PS, Mavrantzas VG (2010) Macromolecules 43:10692

    Article  CAS  Google Scholar 

  24. Suzuki J, Takano A, Deguchi T, Matsushita Y (2009) J Chem Phys 131:144902

    Article  Google Scholar 

  25. Eisenriegler E (1993) Polymers near surfaces. World Scientific, Singapore

    Book  Google Scholar 

  26. Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, London

    Google Scholar 

  27. Żerko S, Polanowski P, Sikorski A (2012) Soft Matter 8:973–979

    Article  Google Scholar 

  28. Adamczyk P, Romiszowski P, Sikorski A (2008) J Chem Phys 128:154911

    Article  Google Scholar 

  29. Vigil RD, Ziff RM (1989) J Chem Phys 91:2599–2602

    Article  Google Scholar 

  30. Ziff RM, Vigil RD (1990) J Phys A Math Gen 23:5103–5108

    Article  Google Scholar 

  31. Vandewalle N, Galam S, Kramer M (2000) Eur Phys J B 14:407–410

    Article  CAS  Google Scholar 

  32. Kondrat G, Pękalski A (2001) Phys Rev E 63:051108

    Article  CAS  Google Scholar 

  33. Kondrat G, Pękalski A (2001) Phys Rev E 64:056118

    Article  CAS  Google Scholar 

  34. Evans JW (1993) Rev Mod Phys 65:1281–1329

    Article  CAS  Google Scholar 

  35. Tarasevich YY, Cherkasova VA (2007) Eur Phys J B 60:97–100

    Article  CAS  Google Scholar 

  36. Cieśla M (2013) Phys Rev E 87:052401

    Article  Google Scholar 

  37. Romiszowski P, Sikorski A (2013) Comput Methods Sci Technol 19:115–121

    Article  Google Scholar 

  38. Cornette V, Ramirez-Pastor JA, Nieto F (2003) Eur Phys J B 36:391–399

    Article  CAS  Google Scholar 

  39. Longone P, Centres PM, Ramirez-Pastor AJ (2012) Phys Rev E 85:011108

    Article  CAS  Google Scholar 

  40. Matoz-Fernandez DA, Linares DH, Ramirez-Pastor AJ (2012) Eur Phys J B 85:296

    Article  Google Scholar 

  41. López LG, Ramirez-Pastor AJ (2012) Langmuir 28:14917–14924

    Article  Google Scholar 

  42. Tarasevich YY, Lebovka NI, Laptev VV (2012) Phys Rev E 86:061116

    Article  Google Scholar 

  43. Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Phys Rev E 52:819–828

    Article  CAS  Google Scholar 

  44. Yi YB, Sastry AM (2004) Proc R Soc Lond A 460:2353–2360

    Article  Google Scholar 

  45. Li J, Östling M (2013) Phys Rev E 88:012101

    Article  Google Scholar 

  46. Chatterjee AP (2014) J Chem Phys 140:304911

    Article  Google Scholar 

  47. Becklehimer JB, Pandey RB (1994) J Stat Phys 75:765–771

    Article  Google Scholar 

  48. Wang SJ, Pandey RB (1996) Phys Rev Lett 177:1773–1776

    Article  Google Scholar 

  49. Kondrat G (2003) J Chem Phys 117:6662–6668

    Article  Google Scholar 

  50. Cornette V, Ramirez-Pastor AJ, Nieto F (2003) Eur Phys J B 36:391–399

    Article  CAS  Google Scholar 

  51. Cornette V, Ramirez-Pastor AJ, Nieto F (2003) Physica A 327:71–75

    Article  Google Scholar 

  52. Wang J-S, Pandey RB (1996) Phys Rev Lett 77:1773–1776

    Article  CAS  Google Scholar 

  53. Lončarević I, Budinski-Petković L, Vrhovac SB, Belić A (2009) Phys Rev E 80:021115

    Article  Google Scholar 

  54. Cieśla M, Barbasz J (2013) J Mol Model 19:5423–5427

    Article  Google Scholar 

  55. Adamczyk P, Polanowski P, Sikorski A (2009) J Chem Phys 131:234901

    Article  Google Scholar 

  56. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  57. Sikorski A (2001) Macromol Theory Simul 10:38–45

    Article  CAS  Google Scholar 

  58. Binder K, Müller M, Baschnagel J (2004) Polymer models on the lattice. In: Kotelyanskii M, Theodorou DN (eds) Simulation methods for polymers. Dekker, NewYork

  59. Pawłowska M, Sikorski A (2013) J Mol Model 19:4251–4258

    Article  Google Scholar 

  60. Newman MEJ, Ziff RM (2001) Phys Rev E 64:016706

    Article  CAS  Google Scholar 

  61. Nakamura M (1986) J Phys A Math Gen 19:2345–2351

    Article  Google Scholar 

  62. Privman V, Wang JS, Nielaba P (1991) Phys Rev B 43:3366–3372

    Article  Google Scholar 

  63. Polanowski P, Jeszka JK, Sikorski A (2014) Macromolecules 47:4830–4839

    Article  CAS  Google Scholar 

  64. Rudnick J, Gaspari G (1986) J Phys A Math Gen 19:L191–L193

    Article  Google Scholar 

  65. Diehl WH, Eisenriegler E (1989) J Phys A Math Gen 22:L87–L91

    Article  Google Scholar 

Download references

Acknowledgments

The computational part of this work was done using the computer cluster at the Computing Center of the Department of Chemistry, University of Warsaw. This work was supported by the Polish National Science Center grant UMO-2013/09/B/ST5/00093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Sikorski.

Additional information

This paper belongs to Topical Collection 6th conference on Modeling & Design of Molecular Materials in Kudowa Zdrój (MDMM 2014)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuriata, A., Sikorski, A. The structure of adsorbed cyclic chains. J Mol Model 21, 56 (2015). https://doi.org/10.1007/s00894-015-2605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2605-5

Keywords

Navigation