Skip to main content
Log in

Theoretical investigation of the asymmetric molecular harmonic emission and the attosecond pulse generation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The harmonic emission of the asymmetric charged molecule HeH2+ ion is theoretically investigated by solving the one-dimensional-time-dependent Schrödinger equation. Results show that the laser-induced electron transfer process between the vibrational state and the ground electronic state is responsible for the resonant peak on the harmonic spectrum, and that the two ionization pathways are behind the two identified cutoff energies. In addition, by optimizing the asymmetric harmonic emission, the generations of the ultrashort attosecond pulses are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krausz F, Ivanov M (2009) Rev Mod Phys 81:163–234

    Article  Google Scholar 

  2. Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri SD, Nisoli M (2006) Science 314:443–446

    Article  CAS  Google Scholar 

  3. Goulielmakis E, Schultze M, Hofstetter M, Yakovlev VS, Gagnon J, Uiberacker M, Aquila AL, Gullikson EM, Attwood DT, Kienberger R, Krausz F, Kleineberg U (2008) Science 320:1614–1617

    Article  CAS  Google Scholar 

  4. Uiberacker M, Uphues T, Schultze M, Verhoef AJ, Yakovlev V, Kling MF, Rauschenberger J, Kabachnik NM, Schröder H, Lezius M, Kompa KL, Muller HG, Vrakking MJJ, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F (2007) Nature 446:627–632

    Article  CAS  Google Scholar 

  5. Lein M (2005) Phys Rev Lett 94:053004

    Article  Google Scholar 

  6. Sansone G, Kelkensberg F, Pérez-Torres JF, Morales F, Kling MF, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario JL, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov MY, Nisoli M, Martin F, Vrakking MJJ (2010) Nature 465:763–U3

    Article  CAS  Google Scholar 

  7. Chen YJ, Liu J, Hu B (2009) J Chem Phys 130:044311

    Article  CAS  Google Scholar 

  8. Feng LQ, Chu TS (2011) Phys Rev A 84:053853

    Article  Google Scholar 

  9. Marangos JP, Baker S, Kajumba N, Robinson JS, Tisch JWG, Torres R (2008) Phys Chem Chem Phys 10:35–48

    Article  CAS  Google Scholar 

  10. Das T, Augstein BB, Figueira de Morisson Faria C (2013) Phys Rev A 88: 023404

  11. Lai XY, Figueira de Morisson Faria C (2013) Phys Rev A 88: 013406

  12. Yuan KJ, Bandrauk AD (2013) Phys Rev Lett 110:023003

    Article  Google Scholar 

  13. Feng LQ, Chu TS (2012) J Mol Model 18:5097–5106

    Article  CAS  Google Scholar 

  14. Han YC, Madsen LB (2013) Phys Rev A 87:043404

    Article  Google Scholar 

  15. Corkum PB (1993) Phys Rev Lett 71:1994–1997

    Article  CAS  Google Scholar 

  16. Kamta GL, Bandrauk AD (2005) Phys Rev A 71:053407

    Article  Google Scholar 

  17. Figueira de Morisson Faria C (2007) Phys Rev A 76: 043407

  18. Lein M, Hay N, Velotta R, Marangos JP, Knight PL (2002) Phys Rev A 66:023805

    Article  Google Scholar 

  19. Yang WF, Song XH, Zeng ZN, Li RX, Xu ZZ (2010) Opt Express 18:2558–2565

    Article  CAS  Google Scholar 

  20. Lan PF, Lu PX, Li F, Li QG, Hong WY, Zhang QB, Yang ZY, Wang XB (2008) Opt Express 16:17542–17553

    Article  CAS  Google Scholar 

  21. Du HC, Wang HQ, Hu BT (2011) Chin Phys B 20:044207

    Article  Google Scholar 

  22. Benltzhak I, Bouhnik JP, Esry BD, Gertner I, Heber O, Rosner B (1996) Phys Rev A 54:474–479

    Article  Google Scholar 

  23. Kirchner T (2002) Phys Rev Lett 89:093203

    Article  Google Scholar 

  24. Itzhak IB, Gertner I, Heber O, Rosner B (1993) Phys Rev Lett 71:1347–1350

    Article  Google Scholar 

  25. Liu KL, Hong WY, Lu PX (2011) Opt Express 19:20279–20287

    Article  CAS  Google Scholar 

  26. Bian XB, Bandrauk AD (2011) Phys Rev A 83:041403

    Article  Google Scholar 

  27. Bian XB, Bandrauk AD (2010) Phys Rev Lett 105:093903

    Article  Google Scholar 

  28. Bian XB, Bandrauk AD (2011) Phys Rev A 83:023414

    Article  Google Scholar 

  29. Miao XY, Zhang CP (2014) Laser Phys Lett 11:115301

    Article  Google Scholar 

  30. Miao XY, Du HN (2013) Phys Rev A 87:053403

    Article  Google Scholar 

  31. Zhao J, Zhao ZX (2008) Phys Rev A 78:053414

    Article  Google Scholar 

  32. Liu CD, Zeng ZN, Wei PF, Liu P, Li RX, Xu ZZ (2010) Phys Rev A 81:033426

    Article  Google Scholar 

  33. He HX, Lu RF, Zhang PY, Han KL, He GZ (2012) J Chem Phys 136:024311

    Article  Google Scholar 

  34. Feng LQ, Chu TS (2012) J Chem Phys 136:054102

    Article  Google Scholar 

  35. Lu RF, Zhang PY, Han KL (2008) Phys Rev E 77:066701

    Article  Google Scholar 

  36. Hu J, Han KL, He GZ (2005) Phys Rev Lett 95:123001

    Article  Google Scholar 

  37. Chu TS, Zhang Y, Han KL (2006) Int Rev Phys Chem 25:201–235

    Article  CAS  Google Scholar 

  38. Xie TX, Zhang Y, Zhao MY, Han KL (2003) Phys Chem Chem Phys 5:2034–2038

    Article  CAS  Google Scholar 

  39. Burnett K, Reed VC, Cooper J, Knight PL (1992) Phys Rev A 45:3347–3349

    Article  Google Scholar 

  40. Feng LQ, Chu TS (2012) IEEE J Quant Electron 48:1462–1466

    Article  CAS  Google Scholar 

  41. Campos JA, Nascimento DL, Cavalcante DT, Fonseca ALA, Nunes AOC (2006) Int J Quantum Chem 106:2587–2596

    Article  CAS  Google Scholar 

  42. Lagmago Kamta G, Bandrauk AD (2007) Phys Rev A 76:053409

    Article  Google Scholar 

  43. Dehghanian E, Bandrauk AD, Lagmago Kamta G (2013) J Chem Phys 139:084315

    Article  CAS  Google Scholar 

  44. Feng LQ, Chu TS (2013) Commun Comput Chem 1:52–62

    Google Scholar 

  45. Antoine P, Piraux B, Maquet A (1995) Phys Rev A 51:R1750–R1753

    Article  CAS  Google Scholar 

  46. Feng LQ, Yuan MH, Chu TS (2013) Phys Plasmas 20:122307

    Article  Google Scholar 

  47. Feng LQ, Chu TS (2012) Chem Phys 405:26–31

    Article  CAS  Google Scholar 

  48. Mairesse Y, Bohan AD, Frasinski LJ, Merdji H, Dinu LC, Monchicourt P, Breger P, Kovačev M, Taïeb R, Carré B, Muller HG, Agostini P, Salières P (2003) Science 302:1540–1543

    Article  CAS  Google Scholar 

  49. Feng LQ, Chu TS (2012) J Electron Spectrosc Relat Phenom 185:458–465

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Professor Keli Han for providing the computational code used in the present work. Project supported by the Scientific Research Fund of Liaoning Provincial Education Department, China (Grant Nos. L2014242 and L2012223) and the Scientific Research Fund of Liaoning University of Technology, China (Grant Nos. X201319 and X201312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qiang Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, LQ., Liu, H. Theoretical investigation of the asymmetric molecular harmonic emission and the attosecond pulse generation. J Mol Model 21, 43 (2015). https://doi.org/10.1007/s00894-015-2601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2601-9

Keywords

Navigation