Skip to main content
Log in

New insights into steric and electronic effects in a series of phosphine ligands from the perspective of local quantum similarity using the Fukui function

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The field of molecular quantum similarity (MQS) was introduced by Carbó-Dorca 30 years ago. MQS currently suffers from numerous bottlenecks, for example when studying similarities in chemical reactivity, because there is no clear guidance on the best methodology to follow. For this reason, we have revisited this topic here. Today’s search tools and methodologies have made an important contribution to studying steric and electronic effects in phosphine ligands (PR3). In this contribution, we propose a hybrid methodology joining (MQS) and chemical reactivity. Additionally, a chemical reactivity study using global and local reactivity descriptors was performed in the context of density functional theory (DFT). Phosphines are σ-donor and π-acceptor ligands, therefore reactivity descriptors allow us quantify the retrodonor process in terms of quantum similarity (QS). In this regard, new ways to characterize steric and electronic effects in phosphine ligands and their chemical bonds are presented in the QS context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baber RA, Haddow MF, Middleton AJ, Orpen AG, Pringle PG (2007) Organometallics 26:713

    Article  CAS  Google Scholar 

  2. Bunten KA, Chen LZ, Fernandez AL, Poe A (2002) J Coord Chem Rev 233:41

    Article  Google Scholar 

  3. Ohta H, Tokunaga M, Obora Y, Iwai T, Iwasawa T, Fujihara T, Tsuji Y (2007) Org Lett 9:89

    Article  CAS  Google Scholar 

  4. Crabtree RH (2009) The organometallic chemistry of the transition metals, 5th edn. Wiley, New York

    Google Scholar 

  5. Fey N, Orpen AG, Harvey JN (2009) Coord Chem Rev 253:704

    Article  CAS  Google Scholar 

  6. Burck S, Gudat D, Nieger M, Du Mont W-W (2006) J Am Chem Soc 128:3946

    Article  CAS  Google Scholar 

  7. Cavallo L, Sola M (2001) J Am Chem Soc 123:12294

    Article  CAS  Google Scholar 

  8. Ohzu Y, Goto K, Kawashima T (2003) Angew Chem Int Ed 42:5714

    Article  CAS  Google Scholar 

  9. Suresh CH, Gadre SR (2007) J Phys Chem A 111:710

    Article  CAS  Google Scholar 

  10. Van Leeuwen PW (2004) Homogeneous catalysis: understanding the art. Kluwer, Dordrecht

    Book  Google Scholar 

  11. Carbó-Dorca R (2013) J Math Chem 51:289

    Article  Google Scholar 

  12. Carbó-Dorca R (2008) J Math Chem 44:621

    Article  Google Scholar 

  13. Bultinck P, Gironés X, Carbó-Dorca R (2005) Rev Comput Chem 21:127

    CAS  Google Scholar 

  14. Carbó-Dorca R, Besalú E (2011) J Math Chem 49:1769–1784. doi:10.1007/s10910-011-9960-y

  15. Gironés X, Carbó-Dorca R (2006) QSAR Comb Sci 25:579

    Article  Google Scholar 

  16. Carbó-Dorca R, Gironés X (2005) Int J Quantum Chem 101:8

    Article  Google Scholar 

  17. Carbó-Dorca R, Besalú E (2010) J Comput Chem 31:2452

    Article  Google Scholar 

  18. Carbó-Dorca R, Mercado LD (2010) J Comput Chem 31:2195

    Article  Google Scholar 

  19. Carbó-Dorca R, Besalú E, Mercado LD (2011) J Comput Chem 32:582

    Article  Google Scholar 

  20. Mathew J, Thomas T, Suresh CH (2007) Inorg Chem 46:10800

    Article  CAS  Google Scholar 

  21. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520

    Article  CAS  Google Scholar 

  22. Gazquez JL (2008) J Mex Chem Soc 52:3

    CAS  Google Scholar 

  23. Chermette H (1999) J Comput Chem 20:129

    Article  CAS  Google Scholar 

  24. Liu SB (2009) Acta Phys Chim Sin 25:590

    CAS  Google Scholar 

  25. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  26. Bultinck P, Carbó-Dorca R (2005) J Chem Sci 117:425

    Article  CAS  Google Scholar 

  27. Vivas-Reyes R, Arias A, Vandenbussche J, Van Alsenoy C, Bultinck P (2010) Theochem 943(3):183

    Article  CAS  Google Scholar 

  28. Morales-Bayuelo A, Torres J, Vivas-Reyes R (2012) J Theor Comput Chem 11:1

    Article  Google Scholar 

  29. Morales-Bayuelo A, Vivas-Reyes R (2014) J Quantum Chem 14:1–12

    Google Scholar 

  30. Morales-Bayuelo A, Baldiris R, Torres J, Torres JE, Vivas-Reyes R (2012) Int J Quantum Chem 112:2681

    Article  CAS  Google Scholar 

  31. Morales-Bayuelo A, Vivas-Reyes R (2013) J Math Chem 51:125

    Article  CAS  Google Scholar 

  32. Manz TA, Phomphrai K, Medvedev G, Krishnamurthy BB, Sharma S, Haq J, Novstrup KA, Thomson KT, Delgass WN, Caruthers JM, Abu-Omar MM (2007) J Am Chem Soc 129:3776

    Article  CAS  Google Scholar 

  33. Niksch T, Helmar G, Wolfgang W (2009) Eur J Inorg Chem 9999:9999

    Google Scholar 

  34. Liang L-C (2006) Coord Chem Rev 250:1152

    Article  CAS  Google Scholar 

  35. Damian K, Clarke ML, Cobley CJ (2008) J Mol Catal A Chem 284:46

    Article  CAS  Google Scholar 

  36. Carbo-Dorca R (2012) J Math Chem 50:734–740

    Article  CAS  Google Scholar 

  37. Hodgkin EE, Richards WG (1988) Molecular similarity. Chem Ber 24:1141

    Google Scholar 

  38. Bultinck P, Cooper DL, Van Neck D (2009) Phys Chem Chem Phys 11:3424–3429

    Article  CAS  Google Scholar 

  39. Patrick Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126:144111

    Article  Google Scholar 

  40. Miliordos E, Harrison JF (2013) J Chem Phys 138:184305

    Article  Google Scholar 

  41. Balanarayan P, Gadre SR (2006) J Chem Phys 124:204113

    Article  CAS  Google Scholar 

  42. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198

    Article  Google Scholar 

  43. De Proft F, Vivas-Reyes R, Peeters A, Van Alsenoy C, Geerlings P (2003) J Comput Chem 24:463

    Article  Google Scholar 

  44. Gironés X, Carbó-Dorca R, Mezey PG (2001) J Mol Graph Model 19:343

    Article  Google Scholar 

  45. Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2005) J Mol Struct THEOCHEM 727:49

    Article  CAS  Google Scholar 

  46. Amat L, Carbó-Dorca R (2000) J Chem Inf Comput Sci 40:1188

    Article  CAS  Google Scholar 

  47. Senet P, Yang M (2005) J Chem Sci 117:411

    Article  CAS  Google Scholar 

  48. Fuentealba P, Florez E, Tiznado W (2010) J Chem Theory Comput 6:1470

    Article  CAS  Google Scholar 

  49. Flores-Moreno R (2010) J Chem Theory Comput 6:48

    Article  CAS  Google Scholar 

  50. Chandra MT, Nguyen AK (2008) In: Chattaraj PK (ed) Chemical reactivity theory: a density-functional view. Taylor and Francis, New York, p 163

    Google Scholar 

  51. Ayers PW, Morrison RC, Roy RK (2002) J Chem Phys 116:8731

    Article  CAS  Google Scholar 

  52. Bultinck P, Carbó-Dorca R, Langenaeker W (2003) J Chem Phys 118:4349

    Article  CAS  Google Scholar 

  53. Toorent-Sucarrat M, Luis JM, Duran M, Toro-Labbé A, Solà M (2003) J Chem Phys 119:9393

    Article  Google Scholar 

  54. Ayers PW (2007) Faraday Discuss 135:161

    Article  CAS  Google Scholar 

  55. Ernzerhof M, Scuseria GE (2000) Theor Chem Accounts 103:259

    Article  CAS  Google Scholar 

  56. Ayers PW, Yang WT, Bartolotti LJ (2009) In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC, Boca Raton, p 255

    Google Scholar 

  57. Roy RK, Hirao K (2000) J Chem Phys 113:1372

    Article  Google Scholar 

  58. Arfken GB, Weber HJ (2000) Mathematical methods for physicists, 5th edn. Academic, Boston

    Google Scholar 

  59. Morales-Bayuelo A, Ayazo H, Vivas-Reyes R (2010) Eur J Med Chem 10:4509

    Article  Google Scholar 

  60. Constans P, Amat L, Carbó-Dorca R (1997) J Comput Chem 18:826

    Article  CAS  Google Scholar 

  61. Girones X, Robert D, Carbó-Dorca R (2001) J Comput Chem 22:255

    Article  CAS  Google Scholar 

  62. Carbó-Dorca R IQC technical report TR-2012-11. doi:10.1002/jcc.23198

  63. Carbó-Dorca R (2013) J Comput Chem 34:766

    Article  Google Scholar 

  64. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  65. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  66. Bultinck P, Clarisse D, Ayers P, Carbó-Dorca R (2011) Phys Chem Chem Phys 13:6110

    Article  CAS  Google Scholar 

  67. Yang WT, Zhang YK, Ayers PW (2000) Phys Rev Lett 84:5172

    Article  CAS  Google Scholar 

  68. McNaught AD, Wilkinson A (2006) IUPAC. Compendium of chemical terminology, 2nd edn. (The “Gold Book”). Blackwell Scientific, Oxford

  69. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708

Download references

Acknowledgments

Thanks to the Universidad de Talca [Centro de Bioinformática y Simulación molecular (CBSM)] for continuous support of this investigation, to Dr. Ramon Carbó-Dorca (Universidad de Girona, España) for the Topo-Geometrical Superposition Algorithm (TGSA) program, to the postdoctoral project No. 3150035 [FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico), Chile] and finally thanks to Dr. Peter Politzer (associate editor) for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Morales-Bayuelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Bayuelo, A., Caballero, J. New insights into steric and electronic effects in a series of phosphine ligands from the perspective of local quantum similarity using the Fukui function. J Mol Model 21, 45 (2015). https://doi.org/10.1007/s00894-015-2600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2600-x

Keywords

Navigation