Abstract
The field of molecular quantum similarity (MQS) was introduced by Carbó-Dorca 30 years ago. MQS currently suffers from numerous bottlenecks, for example when studying similarities in chemical reactivity, because there is no clear guidance on the best methodology to follow. For this reason, we have revisited this topic here. Today’s search tools and methodologies have made an important contribution to studying steric and electronic effects in phosphine ligands (PR3). In this contribution, we propose a hybrid methodology joining (MQS) and chemical reactivity. Additionally, a chemical reactivity study using global and local reactivity descriptors was performed in the context of density functional theory (DFT). Phosphines are σ-donor and π-acceptor ligands, therefore reactivity descriptors allow us quantify the retrodonor process in terms of quantum similarity (QS). In this regard, new ways to characterize steric and electronic effects in phosphine ligands and their chemical bonds are presented in the QS context.
Similar content being viewed by others
References
Baber RA, Haddow MF, Middleton AJ, Orpen AG, Pringle PG (2007) Organometallics 26:713
Bunten KA, Chen LZ, Fernandez AL, Poe A (2002) J Coord Chem Rev 233:41
Ohta H, Tokunaga M, Obora Y, Iwai T, Iwasawa T, Fujihara T, Tsuji Y (2007) Org Lett 9:89
Crabtree RH (2009) The organometallic chemistry of the transition metals, 5th edn. Wiley, New York
Fey N, Orpen AG, Harvey JN (2009) Coord Chem Rev 253:704
Burck S, Gudat D, Nieger M, Du Mont W-W (2006) J Am Chem Soc 128:3946
Cavallo L, Sola M (2001) J Am Chem Soc 123:12294
Ohzu Y, Goto K, Kawashima T (2003) Angew Chem Int Ed 42:5714
Suresh CH, Gadre SR (2007) J Phys Chem A 111:710
Van Leeuwen PW (2004) Homogeneous catalysis: understanding the art. Kluwer, Dordrecht
Carbó-Dorca R (2013) J Math Chem 51:289
Carbó-Dorca R (2008) J Math Chem 44:621
Bultinck P, Gironés X, Carbó-Dorca R (2005) Rev Comput Chem 21:127
Carbó-Dorca R, Besalú E (2011) J Math Chem 49:1769–1784. doi:10.1007/s10910-011-9960-y
Gironés X, Carbó-Dorca R (2006) QSAR Comb Sci 25:579
Carbó-Dorca R, Gironés X (2005) Int J Quantum Chem 101:8
Carbó-Dorca R, Besalú E (2010) J Comput Chem 31:2452
Carbó-Dorca R, Mercado LD (2010) J Comput Chem 31:2195
Carbó-Dorca R, Besalú E, Mercado LD (2011) J Comput Chem 32:582
Mathew J, Thomas T, Suresh CH (2007) Inorg Chem 46:10800
Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520
Gazquez JL (2008) J Mex Chem Soc 52:3
Chermette H (1999) J Comput Chem 20:129
Liu SB (2009) Acta Phys Chim Sin 25:590
Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793
Bultinck P, Carbó-Dorca R (2005) J Chem Sci 117:425
Vivas-Reyes R, Arias A, Vandenbussche J, Van Alsenoy C, Bultinck P (2010) Theochem 943(3):183
Morales-Bayuelo A, Torres J, Vivas-Reyes R (2012) J Theor Comput Chem 11:1
Morales-Bayuelo A, Vivas-Reyes R (2014) J Quantum Chem 14:1–12
Morales-Bayuelo A, Baldiris R, Torres J, Torres JE, Vivas-Reyes R (2012) Int J Quantum Chem 112:2681
Morales-Bayuelo A, Vivas-Reyes R (2013) J Math Chem 51:125
Manz TA, Phomphrai K, Medvedev G, Krishnamurthy BB, Sharma S, Haq J, Novstrup KA, Thomson KT, Delgass WN, Caruthers JM, Abu-Omar MM (2007) J Am Chem Soc 129:3776
Niksch T, Helmar G, Wolfgang W (2009) Eur J Inorg Chem 9999:9999
Liang L-C (2006) Coord Chem Rev 250:1152
Damian K, Clarke ML, Cobley CJ (2008) J Mol Catal A Chem 284:46
Carbo-Dorca R (2012) J Math Chem 50:734–740
Hodgkin EE, Richards WG (1988) Molecular similarity. Chem Ber 24:1141
Bultinck P, Cooper DL, Van Neck D (2009) Phys Chem Chem Phys 11:3424–3429
Patrick Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126:144111
Miliordos E, Harrison JF (2013) J Chem Phys 138:184305
Balanarayan P, Gadre SR (2006) J Chem Phys 124:204113
De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198
De Proft F, Vivas-Reyes R, Peeters A, Van Alsenoy C, Geerlings P (2003) J Comput Chem 24:463
Gironés X, Carbó-Dorca R, Mezey PG (2001) J Mol Graph Model 19:343
Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2005) J Mol Struct THEOCHEM 727:49
Amat L, Carbó-Dorca R (2000) J Chem Inf Comput Sci 40:1188
Senet P, Yang M (2005) J Chem Sci 117:411
Fuentealba P, Florez E, Tiznado W (2010) J Chem Theory Comput 6:1470
Flores-Moreno R (2010) J Chem Theory Comput 6:48
Chandra MT, Nguyen AK (2008) In: Chattaraj PK (ed) Chemical reactivity theory: a density-functional view. Taylor and Francis, New York, p 163
Ayers PW, Morrison RC, Roy RK (2002) J Chem Phys 116:8731
Bultinck P, Carbó-Dorca R, Langenaeker W (2003) J Chem Phys 118:4349
Toorent-Sucarrat M, Luis JM, Duran M, Toro-Labbé A, Solà M (2003) J Chem Phys 119:9393
Ayers PW (2007) Faraday Discuss 135:161
Ernzerhof M, Scuseria GE (2000) Theor Chem Accounts 103:259
Ayers PW, Yang WT, Bartolotti LJ (2009) In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC, Boca Raton, p 255
Roy RK, Hirao K (2000) J Chem Phys 113:1372
Arfken GB, Weber HJ (2000) Mathematical methods for physicists, 5th edn. Academic, Boston
Morales-Bayuelo A, Ayazo H, Vivas-Reyes R (2010) Eur J Med Chem 10:4509
Constans P, Amat L, Carbó-Dorca R (1997) J Comput Chem 18:826
Girones X, Robert D, Carbó-Dorca R (2001) J Comput Chem 22:255
Carbó-Dorca R IQC technical report TR-2012-11. doi:10.1002/jcc.23198
Carbó-Dorca R (2013) J Comput Chem 34:766
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.01. Gaussian, Inc, Wallingford
Becke AD (1993) J Chem Phys 98:5648
Bultinck P, Clarisse D, Ayers P, Carbó-Dorca R (2011) Phys Chem Chem Phys 13:6110
Yang WT, Zhang YK, Ayers PW (2000) Phys Rev Lett 84:5172
McNaught AD, Wilkinson A (2006) IUPAC. Compendium of chemical terminology, 2nd edn. (The “Gold Book”). Blackwell Scientific, Oxford
Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708
Acknowledgments
Thanks to the Universidad de Talca [Centro de Bioinformática y Simulación molecular (CBSM)] for continuous support of this investigation, to Dr. Ramon Carbó-Dorca (Universidad de Girona, España) for the Topo-Geometrical Superposition Algorithm (TGSA) program, to the postdoctoral project No. 3150035 [FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico), Chile] and finally thanks to Dr. Peter Politzer (associate editor) for his valuable comments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Morales-Bayuelo, A., Caballero, J. New insights into steric and electronic effects in a series of phosphine ligands from the perspective of local quantum similarity using the Fukui function. J Mol Model 21, 45 (2015). https://doi.org/10.1007/s00894-015-2600-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00894-015-2600-x