Advertisement

New insights into steric and electronic effects in a series of phosphine ligands from the perspective of local quantum similarity using the Fukui function

  • Alejandro Morales-BayueloEmail author
  • Julio Caballero
Original Paper

Abstract

The field of molecular quantum similarity (MQS) was introduced by Carbó-Dorca 30 years ago. MQS currently suffers from numerous bottlenecks, for example when studying similarities in chemical reactivity, because there is no clear guidance on the best methodology to follow. For this reason, we have revisited this topic here. Today’s search tools and methodologies have made an important contribution to studying steric and electronic effects in phosphine ligands (PR3). In this contribution, we propose a hybrid methodology joining (MQS) and chemical reactivity. Additionally, a chemical reactivity study using global and local reactivity descriptors was performed in the context of density functional theory (DFT). Phosphines are σ-donor and π-acceptor ligands, therefore reactivity descriptors allow us quantify the retrodonor process in terms of quantum similarity (QS). In this regard, new ways to characterize steric and electronic effects in phosphine ligands and their chemical bonds are presented in the QS context.

Keywords

Phosphine ligand Molecular quantum similarity Reactivity descriptor Density functional theory 

Notes

Acknowledgments

Thanks to the Universidad de Talca [Centro de Bioinformática y Simulación molecular (CBSM)] for continuous support of this investigation, to Dr. Ramon Carbó-Dorca (Universidad de Girona, España) for the Topo-Geometrical Superposition Algorithm (TGSA) program, to the postdoctoral project No. 3150035 [FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico), Chile] and finally thanks to Dr. Peter Politzer (associate editor) for his valuable comments.

References

  1. 1.
    Baber RA, Haddow MF, Middleton AJ, Orpen AG, Pringle PG (2007) Organometallics 26:713CrossRefGoogle Scholar
  2. 2.
    Bunten KA, Chen LZ, Fernandez AL, Poe A (2002) J Coord Chem Rev 233:41CrossRefGoogle Scholar
  3. 3.
    Ohta H, Tokunaga M, Obora Y, Iwai T, Iwasawa T, Fujihara T, Tsuji Y (2007) Org Lett 9:89CrossRefGoogle Scholar
  4. 4.
    Crabtree RH (2009) The organometallic chemistry of the transition metals, 5th edn. Wiley, New YorkGoogle Scholar
  5. 5.
    Fey N, Orpen AG, Harvey JN (2009) Coord Chem Rev 253:704CrossRefGoogle Scholar
  6. 6.
    Burck S, Gudat D, Nieger M, Du Mont W-W (2006) J Am Chem Soc 128:3946CrossRefGoogle Scholar
  7. 7.
    Cavallo L, Sola M (2001) J Am Chem Soc 123:12294CrossRefGoogle Scholar
  8. 8.
    Ohzu Y, Goto K, Kawashima T (2003) Angew Chem Int Ed 42:5714CrossRefGoogle Scholar
  9. 9.
    Suresh CH, Gadre SR (2007) J Phys Chem A 111:710CrossRefGoogle Scholar
  10. 10.
    Van Leeuwen PW (2004) Homogeneous catalysis: understanding the art. Kluwer, DordrechtCrossRefGoogle Scholar
  11. 11.
    Carbó-Dorca R (2013) J Math Chem 51:289CrossRefGoogle Scholar
  12. 12.
    Carbó-Dorca R (2008) J Math Chem 44:621CrossRefGoogle Scholar
  13. 13.
    Bultinck P, Gironés X, Carbó-Dorca R (2005) Rev Comput Chem 21:127Google Scholar
  14. 14.
    Carbó-Dorca R, Besalú E (2011) J Math Chem 49:1769–1784. doi: 10.1007/s10910-011-9960-y
  15. 15.
    Gironés X, Carbó-Dorca R (2006) QSAR Comb Sci 25:579CrossRefGoogle Scholar
  16. 16.
    Carbó-Dorca R, Gironés X (2005) Int J Quantum Chem 101:8CrossRefGoogle Scholar
  17. 17.
    Carbó-Dorca R, Besalú E (2010) J Comput Chem 31:2452CrossRefGoogle Scholar
  18. 18.
    Carbó-Dorca R, Mercado LD (2010) J Comput Chem 31:2195CrossRefGoogle Scholar
  19. 19.
    Carbó-Dorca R, Besalú E, Mercado LD (2011) J Comput Chem 32:582CrossRefGoogle Scholar
  20. 20.
    Mathew J, Thomas T, Suresh CH (2007) Inorg Chem 46:10800CrossRefGoogle Scholar
  21. 21.
    Ayers PW, Anderson JSM, Bartolotti LJ (2005) Int J Quantum Chem 101:520CrossRefGoogle Scholar
  22. 22.
    Gazquez JL (2008) J Mex Chem Soc 52:3Google Scholar
  23. 23.
    Chermette H (1999) J Comput Chem 20:129CrossRefGoogle Scholar
  24. 24.
    Liu SB (2009) Acta Phys Chim Sin 25:590Google Scholar
  25. 25.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793CrossRefGoogle Scholar
  26. 26.
    Bultinck P, Carbó-Dorca R (2005) J Chem Sci 117:425CrossRefGoogle Scholar
  27. 27.
    Vivas-Reyes R, Arias A, Vandenbussche J, Van Alsenoy C, Bultinck P (2010) Theochem 943(3):183CrossRefGoogle Scholar
  28. 28.
    Morales-Bayuelo A, Torres J, Vivas-Reyes R (2012) J Theor Comput Chem 11:1CrossRefGoogle Scholar
  29. 29.
    Morales-Bayuelo A, Vivas-Reyes R (2014) J Quantum Chem 14:1–12Google Scholar
  30. 30.
    Morales-Bayuelo A, Baldiris R, Torres J, Torres JE, Vivas-Reyes R (2012) Int J Quantum Chem 112:2681CrossRefGoogle Scholar
  31. 31.
    Morales-Bayuelo A, Vivas-Reyes R (2013) J Math Chem 51:125CrossRefGoogle Scholar
  32. 32.
    Manz TA, Phomphrai K, Medvedev G, Krishnamurthy BB, Sharma S, Haq J, Novstrup KA, Thomson KT, Delgass WN, Caruthers JM, Abu-Omar MM (2007) J Am Chem Soc 129:3776CrossRefGoogle Scholar
  33. 33.
    Niksch T, Helmar G, Wolfgang W (2009) Eur J Inorg Chem 9999:9999Google Scholar
  34. 34.
    Liang L-C (2006) Coord Chem Rev 250:1152CrossRefGoogle Scholar
  35. 35.
    Damian K, Clarke ML, Cobley CJ (2008) J Mol Catal A Chem 284:46CrossRefGoogle Scholar
  36. 36.
    Carbo-Dorca R (2012) J Math Chem 50:734–740CrossRefGoogle Scholar
  37. 37.
    Hodgkin EE, Richards WG (1988) Molecular similarity. Chem Ber 24:1141Google Scholar
  38. 38.
    Bultinck P, Cooper DL, Van Neck D (2009) Phys Chem Chem Phys 11:3424–3429CrossRefGoogle Scholar
  39. 39.
    Patrick Bultinck P, Van Alsenoy C, Ayers PW, Carbó-Dorca R (2007) J Chem Phys 126:144111CrossRefGoogle Scholar
  40. 40.
    Miliordos E, Harrison JF (2013) J Chem Phys 138:184305CrossRefGoogle Scholar
  41. 41.
    Balanarayan P, Gadre SR (2006) J Chem Phys 124:204113CrossRefGoogle Scholar
  42. 42.
    De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002) J Comput Chem 23:1198CrossRefGoogle Scholar
  43. 43.
    De Proft F, Vivas-Reyes R, Peeters A, Van Alsenoy C, Geerlings P (2003) J Comput Chem 24:463CrossRefGoogle Scholar
  44. 44.
    Gironés X, Carbó-Dorca R, Mezey PG (2001) J Mol Graph Model 19:343CrossRefGoogle Scholar
  45. 45.
    Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P (2005) J Mol Struct THEOCHEM 727:49CrossRefGoogle Scholar
  46. 46.
    Amat L, Carbó-Dorca R (2000) J Chem Inf Comput Sci 40:1188CrossRefGoogle Scholar
  47. 47.
    Senet P, Yang M (2005) J Chem Sci 117:411CrossRefGoogle Scholar
  48. 48.
    Fuentealba P, Florez E, Tiznado W (2010) J Chem Theory Comput 6:1470CrossRefGoogle Scholar
  49. 49.
    Flores-Moreno R (2010) J Chem Theory Comput 6:48CrossRefGoogle Scholar
  50. 50.
    Chandra MT, Nguyen AK (2008) In: Chattaraj PK (ed) Chemical reactivity theory: a density-functional view. Taylor and Francis, New York, p 163Google Scholar
  51. 51.
    Ayers PW, Morrison RC, Roy RK (2002) J Chem Phys 116:8731CrossRefGoogle Scholar
  52. 52.
    Bultinck P, Carbó-Dorca R, Langenaeker W (2003) J Chem Phys 118:4349CrossRefGoogle Scholar
  53. 53.
    Toorent-Sucarrat M, Luis JM, Duran M, Toro-Labbé A, Solà M (2003) J Chem Phys 119:9393CrossRefGoogle Scholar
  54. 54.
    Ayers PW (2007) Faraday Discuss 135:161CrossRefGoogle Scholar
  55. 55.
    Ernzerhof M, Scuseria GE (2000) Theor Chem Accounts 103:259CrossRefGoogle Scholar
  56. 56.
    Ayers PW, Yang WT, Bartolotti LJ (2009) In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC, Boca Raton, p 255Google Scholar
  57. 57.
    Roy RK, Hirao K (2000) J Chem Phys 113:1372CrossRefGoogle Scholar
  58. 58.
    Arfken GB, Weber HJ (2000) Mathematical methods for physicists, 5th edn. Academic, BostonGoogle Scholar
  59. 59.
    Morales-Bayuelo A, Ayazo H, Vivas-Reyes R (2010) Eur J Med Chem 10:4509CrossRefGoogle Scholar
  60. 60.
    Constans P, Amat L, Carbó-Dorca R (1997) J Comput Chem 18:826CrossRefGoogle Scholar
  61. 61.
    Girones X, Robert D, Carbó-Dorca R (2001) J Comput Chem 22:255CrossRefGoogle Scholar
  62. 62.
    Carbó-Dorca R IQC technical report TR-2012-11. doi: 10.1002/jcc.23198
  63. 63.
    Carbó-Dorca R (2013) J Comput Chem 34:766CrossRefGoogle Scholar
  64. 64.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.01. Gaussian, Inc, WallingfordGoogle Scholar
  65. 65.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  66. 66.
    Bultinck P, Clarisse D, Ayers P, Carbó-Dorca R (2011) Phys Chem Chem Phys 13:6110CrossRefGoogle Scholar
  67. 67.
    Yang WT, Zhang YK, Ayers PW (2000) Phys Rev Lett 84:5172CrossRefGoogle Scholar
  68. 68.
    McNaught AD, Wilkinson A (2006) IUPAC. Compendium of chemical terminology, 2nd edn. (The “Gold Book”). Blackwell Scientific, OxfordGoogle Scholar
  69. 69.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centro de Bioinformática y Simulación Molecular (CBSM)Universidad de TalcaTalcaChile

Personalised recommendations