Skip to main content
Log in

Electronic and optical properties of N-doped Bi2O3 polymorphs for visible light-induced photocatalysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of N doping on the crystal structure, electronic, and optical properties of α-Bi2O3 and β-Bi2O3 has been studied in detail based with first principle calculations. The crystallographic features of Bi2O3 polymorphs are not substantially changed through N doping, whereas charge transfer from Bi to N results in large variations of charge density distribution. N-doped β-Bi2O3 exhibits improved thermal stability due to stronger Bi-N covalent bonds and lower defect formation energy, and the convenient preparative access agrees well with experimental observations. Calculated band structures and optical properties indicate that N doping does not induce major band gap narrowing, but leads to the presence of isolated bands above the VBM induced by N 2p for both α-Bi2O3 and β-Bi2O3 which induce large red-shifts of their visible light absoprtion properties. These isolated bands act as acceptor levels and facilitate electron transition under visible light illumination through introduction of steps between VB and CB, thereby rendering the materials quite promising for photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen XB, Mao SS (2007) Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  2. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  3. Wang F, Cao K, Zhang Q, Gong XD, Zhou Y (2014) J Mol Model 20:2506

  4. Leontie L, Caraman M, Delibas M, Rusu GI (2001) Mater Res Bull 36:1629–1637

    Article  CAS  Google Scholar 

  5. Muruganandham M, Amutha R, Lee GJ, Hsieh SH, Wu JJ, Sillanpää MJ (2012) Phys Chem C 116:12906–12915

    Article  CAS  Google Scholar 

  6. Huang Q, Zhang S, Cai C, Zhou B (2011) Mater Lett 65988–65990

  7. Cheng H, Huang B, Lu J, Wang Z, Xu B, Qin X, Zhang X, Dai Y (2010) Phys Chem Chem Phys 12:15468–15475

    Article  CAS  Google Scholar 

  8. Romanov AN, Fattakhova ZT, Rufov YN, Shashkin DP (2001) Kinet Catal 42:275–280

    Article  CAS  Google Scholar 

  9. Xia N, Yuan D, Zhou T, Chen J, Mo S, Liu Y (2011) Mater Res Bull 46:687–691

    Article  CAS  Google Scholar 

  10. Dai G, Liu S, Liang Y (2014) J Alloys Compd 608:44–48

  11. Lu YG, Yang YC, Xiang YZ, Liu SY (2012) J Inorg Mater 27:643–648

    Article  CAS  Google Scholar 

  12. Jun S, Yuan G, Hao WC, Jing X, Ju HX, Wang L, Feng HF, Wang TM (2014) Chin Phys B 23:038103

    Article  Google Scholar 

  13. Li M, Li F, Yin PG (2014) Chem Phys Lett 601:92–97

    Article  CAS  Google Scholar 

  14. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  CAS  Google Scholar 

  15. Batzill M, Morales EH, Diebold U (2006) Phys Rev Lett 96:026103

    Article  Google Scholar 

  16. Valentin CD, Pacchioni G, Selloni A (2004) Phys Rev B 70085116

  17. Serpone N (2006) J Phys Chem B 110:24287–24293

    Article  CAS  Google Scholar 

  18. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  19. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  20. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys: Condensed Mat 14:2717

    CAS  Google Scholar 

  21. Fischer TH, Almlof J (1992) J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  22. Dong H, Chen G, Sun JX, Li CM, Yu YG, Chen DH (2013) Appl Catal B: Environmental 134:46–54

    Article  Google Scholar 

  23. Lai KR, Zhu YT, Lu JB, Dai Y, Huang BB (2013) Comp Mater Sci 67:88–92

    Article  CAS  Google Scholar 

  24. Wang J, Tafen DN, Lewis JP, Hong ZL, Manivannan A, Zhi MJ, Li M, Wu NQ (2009) J Am Chem Soc 131:12290–12297

    Article  CAS  Google Scholar 

  25. Han XP, Shao GS (2011) J Phys Chem C 115:8274–8282

    Article  CAS  Google Scholar 

  26. Yu JG, Zhou P, Li Q (2013) Phys Chem Chem Phys 151:2040–12047

    Google Scholar 

  27. Harwig HA (1978) Allg Chem 444:167–177

    Article  CAS  Google Scholar 

  28. Wu GH, Zheng SK, Wu PF, Su J, Liu L (2013) Solid State Commun 163:7–10

    Article  CAS  Google Scholar 

  29. Yang KS, Dai Y, Huang BB (2007) J Phys Chem C 111:12086–12090

    Article  CAS  Google Scholar 

  30. Dashora A, Patel N, Kothari DC, Ahuja BL, Miotello A (2014) Sol Energ Mat Sol C 125:120–126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the financial support by the National Natural Science Foundation of China (51102245), Sichuan Youth Science and Technology Foundation (2013JQ0034), the Innovative Research Team of Sichuan Provincial Education Department (2012XJZT002), Scientific Research Staring Project of SWPU (2014QHZ020, 2014PYZ012), and Sichuan Provincial Colleges’ Sate Key Laboratory of Oil and Gas Reservoir Project (x151514kcl17)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cao, K., Wu, Y. et al. Electronic and optical properties of N-doped Bi2O3 polymorphs for visible light-induced photocatalysis. J Mol Model 21, 48 (2015). https://doi.org/10.1007/s00894-015-2596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2596-2

Keywords

Navigation