Skip to main content
Log in

Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We report the detection of ammonia gas through electronic and transport properties analysis of boron nitride sheet. The density functional theory (DFT) based ab initio approach has been used to calculate the electronic and transport properties of BN sheet in presence of ammonia gas. Analysis confirms that the band gap of the sheet increases due to presence of ammonia. Out of different positions, the bridge site is the most favorable position for adsorption of ammonia and the mechanism of interaction falls between weak electrostatic interaction and chemisorption. On relaxation, change in the bond angles of the ammonia molecule in various configurations has been reported with the distance between NH3 and the sheet. An increase in the transmission of electrons has been observed on increasing the bias voltage and I-V relationship. This confirms that, the current increases on applying the bias when ammonia is introduced while a very small current flows for pure BN sheet.

Current voltage relationship of BN sheet on adsorption of (NH3)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Sci Mag 306:666–669

    CAS  Google Scholar 

  2. Novoselov KS, Geim AK (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  3. Lu G, Ocula EL, Chen J (2009) Gas detection using low-temperature reduced graphene oxide sheets. Appl Phys Lett 94:083111

    Article  Google Scholar 

  4. Pashangpour M, Bagheri Z, Ghaffari V (2013) A comparison of electronic transport properties of graphene with hexagonal boron nitride substrate and graphene, a first principle study. Euro Phys J B 86:269

    Article  Google Scholar 

  5. Robinson JT, Perkins FK, Snow ES, Wei ZQ, Sheehan PE (2008) NO2 and humidity sensing characteristics of few-layer graphene. Nano Lett 8:3137

    Article  CAS  Google Scholar 

  6. Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MM (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B: Chem 157:310–331

    Article  CAS  Google Scholar 

  7. Sakhavand N, Shahsavari R (2014) Synergistic behavior of tubes, junctions, and sheets imparts mechano-mutable functionality in 3D porous boron nitride nanostructures. J Phys Chem C, Nanomater Interfaces 118(39):22730–22738. doi:10.1021/jp5044706

    Article  CAS  Google Scholar 

  8. Bhattacharya A, Bhattacharya S, Das GP (2012) Band gap functionalisation of BN sheet. Phys Rev B 85:035415

    Article  Google Scholar 

  9. Zhang Z, Guo W, Dai Y (2009) Stability and electronic properties of small boron nitride nanotubes. J Appl Phys 105:084312

    Article  Google Scholar 

  10. Zheng F, Zhou G, Liu Z, Wu J, Duan W, Gu BL, Zhang SB (2008) Half metallicity along the edges of zigzag boron nitride nanoribbons. Phys Rev B 78:205415

    Article  Google Scholar 

  11. Lopez A, Bezanilla HJ, Terrones H, Sumpter BH (2012) Electronic structure calculations on edge functionalised armchair boron nitride nanoribbons. J Phys Chem C 116(29):15675–15681

    Article  Google Scholar 

  12. Anota EC, Juarez AR, Castro M, Cocoletzi HH (2013) A density functional theory analysis for adsorption of the amine group on graphene and BN nanosheets. J Mol Model 19:321–328

    Article  CAS  Google Scholar 

  13. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sci Direct 121(1):18–35

    CAS  Google Scholar 

  14. Neek-Amal M, Beheshtian J, Sadeghi A, Michel KH, Peeters FM (2013) Boron nitride monolayer: a strain tunable nanosensor. J Phys Chem C 117(25):13261–13267

    Article  CAS  Google Scholar 

  15. Kohl D (2001) Function and application of gas sensors, topical review. J Phys D34:R125–R149

    Google Scholar 

  16. Dubbe A (2003) Fundamentals of solid state ionic micro gas sensors. Sensors Actuators B 88:138–148

    Article  CAS  Google Scholar 

  17. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL (2003) Fabrication and ethanol sensing characteristics of ZnO nanowire based gas sensors. Nature 424:171–174

    Article  Google Scholar 

  18. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Comp Mol Sci 153–163

  19. Murray JS, Politzer P (2002) The fundamental nature and the role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142

    Article  Google Scholar 

  20. Banerjee S, Puri IK (2008) Enhancement in hydrogen storage in carbon nanotubes under modified conditions. Nanotechnology 19:155702

    Article  Google Scholar 

  21. Khan MS, Khan MS (2012) Comparative theoretical study of iron and magnesium incorporated porphyrin induced carbon nanotubes and their interaction with hydrogen molecule. Phys E 44:1857–1861

    Article  CAS  Google Scholar 

  22. Trivedi S, Srivastava A, Kurchania R (2014) Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation. J Comput Theor Nanosci 11(3):1–8

    Google Scholar 

  23. Srivastava A, Jain A, Kurchania R, Tyagi N (2012) Width dependent electronic properties of graphene nanoribbons: an ab-initio study. J Comput Theor Nanosci 9(7):1008–1013

    Article  CAS  Google Scholar 

  24. Trivedi S, Srivastava A, Kurchania A (2014) Electronic and transport properties of silicene nanoribbons. J Comput Theor Nanosci 11:1–6

    Article  Google Scholar 

  25. Srivastava A, Jain SK, Khare PS (2014) Ab-initio study of structural, electronic, and transport properties of zigzag GaP nanotubes. J Mol Model 20:2171

    Article  Google Scholar 

  26. Sholl D, Steckel JA (2009) Density functional theory: a practical introduction

  27. Dreizler RM, Gross EKU (1990) Density functional theory. Springer, Berlin

    Book  Google Scholar 

  28. Atomistix ToolKit version 11.2.2, QuantumWise A/S (www.quantumwise.com)

  29. Perdew JP, Burke K (1996) Ernzerhof M Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  30. Zhang Y, Wang W (1998) Comment on Generalized gradient approximation made simple. Phys Rev Lett 80:890

    Article  CAS  Google Scholar 

  31. Bachelet GB, Hamann DR (1982) Ernzerhof Pseudopotentials that work. Phys Rev B 26:4199–4228

    Article  CAS  Google Scholar 

  32. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  33. Li E, Wang X, Hou L, Zhao D, Dai Y, Wang X (2011) Study on the electronic transport properties of zigzag GaN nanotubes. J Phys Conf Ser 276:012046

    Article  Google Scholar 

  34. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407

    Article  Google Scholar 

  35. Datta S (1995) Electronic transport in mesoscopic systems. Cambridge Univ Press, New York

    Book  Google Scholar 

  36. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density functional method for non-equilibrium electron transport. Phys Rev B 65:165401

    Article  Google Scholar 

Download references

Acknowledgments

The authors are extremely grateful to Atal Bihari Vajpayee-Indian Institute of Information Technology and Management, Gwalior (ABV-IIITM) for providing the infrastructural support to the research work. We are also thankful to Dr. Shazad Khan, Post-Doctoral Fellow at ABV-IIITM for scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Bhat, C., Jain, S.K. et al. Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas. J Mol Model 21, 39 (2015). https://doi.org/10.1007/s00894-015-2595-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2595-3

Keywords

Navigation