Skip to main content
Log in

Theoretical study of stereoselectivity of the [1 + 2] cycloaddition reaction between (1S,3R,8S)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6,4,0,01.3]dodec-9-ene and dibromocarbene using density functional theory (DFT) B3LYP/6-31G*(d)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work we used density functional theory (DFT) B3LYP/6-31G*(d) to study the stoichiometric reaction between the product (1S,3R,8S)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6,4,0,01.3]dodec-9-ene (referred to here as P1) and dibromocarbene. We have shown that P1 behaves as a nucleophile, while dibromocarbene behaves as an electrophile; that the chemical potential of dibromocarbene is superior to that of P1 in absolute terms; and that P1 reacts with an equivalent quantity of dibromocarbene to produce two products: (1S,3R,8R,9S,11R)-10,10-dibromo-2,2-dichloro-3,7,7,11-tetramethyltetracyclo[6,5,0,01.3,09.11] tridecane (referred to here as P2) and (1S,3R,8R,9R,11S)-10,10-dibromo-2,2-dichloro-3,7,7,11-tetramethyltetracyclo[6,5,0,01.3,09.11] tridecane (referred to here as P3). P2 and P3 are formed at the α and β sides, respectively, of the C2 = C3 double bond of P1. This reaction is exothermic, stereoselective and chemospecific, and is controlled by charge transfer. Regioselectivity of the reaction was interpreted using the Lee-Yang-Parr functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dakir M, Auhmani A, Ait Itto MY, Mazoir N, Akssira M, Pierrot M, Benharref A (2004) Optimisation of allylic oxidation of (1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo-[6.4.0.01,3] dodec-9-ene. Synth Commun 34(11):2001–2008

    Article  CAS  Google Scholar 

  2. Auhmani A, Kossareva E, Eljamili H, Reglier M, Pierrot M, Benharref A (2002) Regiospecific synthesis of a new chiral N-substituted pyrazole using a sesquiterpene hydrocarbon. Synth Commun 32(5):707–715

    Article  Google Scholar 

  3. Eljamili H, Auhmani A, Dakir M, Lassaba E, Benharref A, Pierrot M, Chiaroni A, Riche C (2002) Oxydation et addition des dihalocarbènes sur le β-himachalène. Tetrahedron Lett 43:6645–6648

    Article  CAS  Google Scholar 

  4. Auhmani A, Kossareva E, Lassaba E, Réglier M, Pierrot M and Benharref A (1999) Cyclopropanation reactions on α-cis-himachalene and a β-himachalene. Acta Cryst C 55: IUC9900055

  5. Oukhrib A, Benharref A, Saadi M, Berraho M and El Ammari L (2013) (1S,3R,8R,9S,11R)-10,10-dibromo-2,2-dichloro-3,7,7,11-tetramethyltetracyclo-[6.5.0.01,3.09,11] tridecane. Acta Cryst E 69:o739

  6. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels-Alder reactions. J Phys Chem A 106:6871–6875

    Article  CAS  Google Scholar 

  7. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

  8. Pérez P, Domingo LR, Duque-Noreña M, Chamorro E (2009) A condensed-to-atom nucleophilicity index. An application to the director effects on the electrophilic aromatic substitutions. J Mol Struct Theochem 895:86–91

    Article  Google Scholar 

  9. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874

    Article  CAS  Google Scholar 

  10. Chandra AK, Nguyen MT (2002) Use of local softness for the interpretation of reaction mechanisms. Int J Mol Sci 3:310–323

    Article  CAS  Google Scholar 

  11. Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89:1827–1836

    Article  CAS  Google Scholar 

  12. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  13. Gaussian 09 (2009) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman,JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT

  14. Lee CT, Yang WT, Parr RG (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  15. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  16. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* Basis set for third-row atoms. J Comp Chem 22:976–984

    Article  CAS  Google Scholar 

  17. Domingo LR, Pérez P, Sáez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494

    Article  CAS  Google Scholar 

  18. Parr RG, Szentpály VL, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

  19. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. Theor Study J Org Chem 73:4615–4624

    Article  CAS  Google Scholar 

  20. Domingo LR, Sáez JA, Arnó M (2014) A DFT study on the NHC catalysed Michael addition of enols to α, β-unsaturated acyl-azoliums. A base catalysed C–C bond-formation step. Org Biomol Chem 12(6):895–890. doi:10.1039/c3ob41924j

  21. Domingo LR, Aurell MJ, Pérez P (2014) The mechanism of ionic Diels-Alder reactions. A DFT study of the oxa-Povarov reaction. RSC Adv 4:16567–16577. doi:10.1039/c3ra47805j

    Article  CAS  Google Scholar 

  22. Domingo LR, Aurell MJ, Sáez JA, Pérez P (2014) Understanding the mechanism of the Povarov reaction. A DFT study. RSC Adv 4:25268–25278. doi:10.1039/c4ra02916j

    Article  CAS  Google Scholar 

  23. Domingo LR (2014) A new C-C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428. doi:10.1039/c4ra04280h

    Article  CAS  Google Scholar 

  24. Zeroual A, El Idrissi M, Benharref A, El Hajbi A (2014) Theoretical study of regioselectivity and stereoselectivity of condensation of β-himachalene with dichlorocarbene using density functional theory (DFT). Int J Innovation Appl Study 5:120–130

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslam El Hajbi.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeroual, A., Benharref, A. & El Hajbi, A. Theoretical study of stereoselectivity of the [1 + 2] cycloaddition reaction between (1S,3R,8S)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6,4,0,01.3]dodec-9-ene and dibromocarbene using density functional theory (DFT) B3LYP/6-31G*(d). J Mol Model 21, 44 (2015). https://doi.org/10.1007/s00894-015-2594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2594-4

Keywords

Navigation