Skip to main content

Advertisement

Log in

Understanding the azeotropic diethyl carbonate–water mixture by structural and energetic characterization of DEC(H2O) n heteroclusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Diethyl carbonate (DEC) is an oxygenated fuel additive. During its synthesis through a promising green process, a DEC-water azeotrope is formed, which decreases DEC production efficiency in the gas phase. Molecular information about this system is scarce but could be of benefit in understanding (and potentially improving) the synthetic process. Therefore, we report a detailed computational study of the conformers of DEC, and their microsolvation with up to four water molecules, with the goal of understanding the observed 1:3 DEC:H2O molar ratio. The most stable DEC conformers (with mutual energy differences < 1.5 kcal mol−1) contribute to the energetic and structural properties of the complexes. An exhaustive stochastic exploration of each potential energy surface of DEC-(H2O) n , (where n = 1, 2, 3, 4) heteroclusters discovered 3, 8, 7, and 4 heterodimers, heterotrimers, heterotetramers, and heteropentamers, respectively, at the MP2/6-311++G(d,p) level of theory. DEC conformers and energies of the most stable structures at each heterocluster size were refined using CCSD(T)/6-311++G(d,p). Energy decomposition, electron density topology, and cooperative effects analyses were carried out to determine the relationship between the geometrical features of the heteroclusters and the non-covalent interaction types responsible for their stabilization. Our findings show that electrostatic and exchange energies are responsible for heterocluster stabilization, and also suggest a mutual weakening among hydrogen bonds when more than three water molecules are present. All described results are complementary and suggest a structural and energetic explanation at the molecular level for the experimental molar ratio of 1:3 (DEC:H2O) for the DEC-water azeotrope.

Molecular understanding of the DEC-Water system: energy and structural data

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–f
Fig. 5
Fig. 6
Fig. 7a–c
Fig. 8
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Chang 2:2–4. doi:10.1038/nclimate1332

    Article  CAS  Google Scholar 

  2. Patz J, Gibbs H, Foley J, Rogers J, Smith K (2007) Climate change and global health: quantifying a growing ethical crisis. EcoHealth 4(4):397–405. doi:10.1007/s10393-007-0141-1

    Article  Google Scholar 

  3. Dias De Oliveira ME, Vaughan BE, Rykiel EJ (2005) Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience 55(7):593–602. doi:10.1641/0006-3568(2005)055[0593:eafecd]2.0.co;2

    Article  Google Scholar 

  4. Watson JG, Chow JC, Fujita EM (2001) Review of volatile organic compound source apportionment by chemical mass balance. Atmos Environ 35(9):1567–1584. doi:10.1016/S1352-2310(00)00461-1

    Article  CAS  Google Scholar 

  5. Gee IL, Sollars CJ (1998) Ambient air levels of volatile organic compounds in Latin American and Asian cities. Chemosphere 36(11):2497–2506. doi:10.1016/S0045-6535(97)10217-X

    Article  CAS  Google Scholar 

  6. Perry R, Gee IL (1995) Vehicle emissions in relation to fuel composition. Sci Total Environ 169(1–3):149–156. doi:10.1016/0048-9697(95)04643-F

    Article  CAS  Google Scholar 

  7. Balasubramaniyan K, Balashanmugam P, Raghupathy A, Balasubramanian G (2013) Studies on emission characteristics of diesel engine run using diesel di methoxy ethane blend fuel. Int J Sci Eng Technol Res 2(11):2031–2037

    Google Scholar 

  8. Mendonca S, Vas JP (2013) Effect of oxygenated fuel additive on dibutyl ether on diesel engine. Int J Sci Res Publ 3(4):1–6

    Google Scholar 

  9. Senthil R, Kannan M, Deepanraj B, Nadanakumar V, Santhanakrishnan S, Lawrence P (2011) Study on performance and emission characteristics of a compression ignition engine fueled with diesel-2 ethoxy ethyl acetate blends. Engineering 3(11):1132–1136. doi:10.4236/eng.2011.311141

    Article  CAS  Google Scholar 

  10. Pacheco MA, Marshall CL (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuel 11(1):2–29. doi:10.1021/ef9600974

    Article  CAS  Google Scholar 

  11. Lapuerta M, Armas O, Rodríguez-Fernández J (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34(2):198–223. doi:10.1016/j.pecs.2007.07.001

    Article  CAS  Google Scholar 

  12. Arbeláez O, Orrego A, Bustamante F, Villa A (2012) Direct synthesis of diethyl carbonate from CO2 and CH3CH2OH over Cu–Ni/AC catalyst. Top Catal 55(7–10):668–672. doi:10.1007/s11244-012-9849-4

    Article  Google Scholar 

  13. Arteconi A, Mazzarini A, Nicola G (2011) Emissions from ethers and organic carbonate fuel additives: a review. Water Air Soil Pollut 221(1–4):405–423. doi:10.1007/s11270-011-0804-y

    Article  CAS  Google Scholar 

  14. Roh N-S, Dunn BC, Eyring EM, Pugmire RJ, Meuzelaar HLC (2003) Production of diethyl carbonate from ethanol and carbon monoxide over a heterogeneous catalytic flow reactor. Fuel Process Technol 83(1–3):27–38. doi:10.1016/S0378-3820(03)00079-1

    Article  CAS  Google Scholar 

  15. Arango IC, Villa AL (2013) Isothermal vapor–liquid and vapor–liquid–liquid equilibrium for the ternary system ethanol + water + diethyl carbonate and constituent binary systems at different temperatures. Fluid Phase Equilib 339:31–39. doi:10.1016/j.fluid.2012.11.026

    Article  CAS  Google Scholar 

  16. Uragami T, Katayama T, Miyata T, Tamura H, Shiraiwa T, Higuchi A (2004) Dehydration of an ethanol/water azeotrope by novel organic–inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane. Biomacromolecules 5(4):1567–1574. doi:10.1021/bm0498880

    Article  CAS  Google Scholar 

  17. Al-Amer AM (2000) Investigating polymeric entrainers for azeotropic distillation of the ethanol/water and MTBE/methanol systems. Ind Eng Chem Res 39(10):3901–3906. doi:10.1021/ie0000515

    Article  CAS  Google Scholar 

  18. de Lima GF, Mavrandonakis A, de Abreu HA, Duarte HA, Heine T (2013) Mechanism of alcohol–water separation in metal–organic frameworks. J Phys Chem C 117(8):4124–4130. doi:10.1021/jp312323b

    Article  Google Scholar 

  19. Mejía SM, Flórez E, Mondragón F (2012) An orbital and electron density analysis of weak interactions in ethanol-water, methanol-water, ethanol and methanol small clusters. J Chem Phys 136(14):144306. doi:10.1063/1.3701563

    Article  Google Scholar 

  20. Mejía SM, Orrego JF, Espinal JF, Fuentealba P, Mondragón F (2011) Exploration of the (ethanol)4–water heteropentamers potential energy surface by simulated annealing and ab initio molecular dynamics. Int J Quantum Chem 111(12):3080–3096. doi:10.1002/qua.22664

  21. Nedic M, Wassermann TN, Larsen RW, Suhm MA (2011) A combined Raman- and infrared jet study of mixed methanol-water and ethanol-water clusters. Phys Chem Chem Phys 13(31):14050–14063. doi:10.1039/C1CP20182D

    Article  CAS  Google Scholar 

  22. Mejía SM, Mills MJL, Shaik MS, Mondragóon F, Popelier PLA (2011) The dynamic behavior of a liquid ethanol-water mixture: a perspective from quantum chemical topology. Phys Chem Chem Phys 13(17):7821–7833. doi:10.1039/C0CP02869J

  23. Mejía SM, Espinal JF, Mondragón F (2009) Cooperative effects on the structure and stability of (ethanol)3–water, (methanol)3–water heterotetramers and (ethanol)4, (methanol)4 tetramers. J Mol Struct THEOCHEM 901(1–3):186–193. doi:10.1016/j.theochem.2009.01.027

    Article  Google Scholar 

  24. Wakisaka A, Matsuura K (2006) Microheterogeneity of ethanol–water binary mixtures observed at the cluster level. J Mol Liq 129(1–2):25–32. doi:10.1016/j.molliq.2006.08.010

    Article  CAS  Google Scholar 

  25. Noskov SY, Lamoureux G, Roux B (2005) Molecular dynamics study of hydration in ethanol–water mixtures using a polarizable force field†. J Phys Chem B 109(14):6705–6713. doi:10.1021/jp045438q

    Article  CAS  Google Scholar 

  26. Nishi N, Koga K, Ohshima C, Yamamoto K, Nagashima U, Nagami K (1988) Molecular association in ethanol-water mixtures studied by mass spectrometric analysis of clusters generated through adiabatic expansion of liquid jets. J Am Chem Soc 110(16):5246–5255. doi:10.1021/ja00224a002

    Article  CAS  Google Scholar 

  27. Fang HL, Swofford RL (1984) Molecular conformers in gas-phase ethanol: a temperature study of vibrational overtones. Chem Phys Lett 105(1):5–11. doi:10.1016/0009-2614(84)80404-2

    Article  CAS  Google Scholar 

  28. Barr-David F, Dodge BF (1959) Vapor-liquid equilibrium at high pressures. The systems ethanol-water and 2-propanol-water. J Chem Eng Data 4(2):107–121. doi:10.1021/je60002a003

    Article  CAS  Google Scholar 

  29. Yang D, Wang H (2013) Effects of hydrogen bonding on the transition properties of ethanol–water clusters: a TD-DFT study. J Clust Sci 24(2):485–495. doi:10.1007/s10876-012-0514-7

    Article  CAS  Google Scholar 

  30. Mejía SM, Espinal JF, Restrepo A, Mondragón F (2007) Molecular interaction of (ethanol)2–water heterotrimers. J Phys Chem A 111(33):8250–8256. doi:10.1021/jp073168g

    Article  Google Scholar 

  31. Lyktey MMY, DeLeon RL, Shores KS, Furlani TR, Garvey JF (2000) Migration of a proton as a function of solvation within {ROH}n{H2O}H+ cluster ions: experiment and theory. J Phys Chem A 104(22):5197–5203. doi:10.1021/jp000872n

  32. Herron WJ, Coolbaugh MT, Vaidyanathan G, Peifer WR, Garvey JF (1992) Observation of magic numbers for (ROH)nH3O+ heteroclusters (R = CH3, CH3CH2, (CH3)2CH, and CH3CH2CH2): implications for cluster ion structure. J Am Chem Soc 114(10):3684–3689. doi:10.1021/ja00036a017

  33. Pérez JF, Restrepo A (2008) ASCEC V-01: Annealing Simulado Con Energía Cuántica. Property, Development and Implementation; Grupo de Química-Física Teórica, Instituto de Química, Universidad de Antioquia, AA 1226 Medellín, Colombia

  34. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  35. Kar BP, Ramanathan N, Sundararajan K, Viswanathan KS (2012) Conformations of dimethyl carbonate and its complexes with water: a matrix isolation infrared and ab initio study. J Mol Struct 1024:84–93. doi:10.1016/j.molstruc.2012.05.007

    Article  CAS  Google Scholar 

  36. Rozas I (2007) On the nature of hydrogen bonds: an overview on computational studies and a word about patterns. Phys Chem Chem Phys 9(22):2782–2790. doi:10.1039/B618225A

    Article  CAS  Google Scholar 

  37. Pérez JF, Hadad CZ, Restrepo A (2008) Structural studies of the water tetramer. Int J Quantum Chem 108(10):1653–1659. doi:10.1002/qua.21615

    Article  Google Scholar 

  38. Guerra D, David J, Restrepo A (2014) Hydrogen bonding in the binary water/ammonia complex. J Comput Methods Sci Eng 14(1):93–102. doi:10.3233/JCM-140487

    Google Scholar 

  39. Hincapié G, Acelas N, Castaño M, David J, Restrepo A (2010) Structural studies of the water hexamer. J Phys Chem A 114(29):7809–7814. doi:10.1021/jp103683m

    Article  Google Scholar 

  40. Ibarguen C, Guerra D, Hadad CZ, Restrepo A (2014) Very weak interactions: structures, energies and bonding in the tetramers and pentamers of hydrogen sulfide. RSC Adv 4(102):58217–58225. doi:10.1039/C4RA09430A

    Article  CAS  Google Scholar 

  41. Gonzalez J, Florez E, Romero J, Reyes A, Restrepo A (2013) Microsolvation of Mg2+, Ca2+: strong influence of formal charges in hydrogen bond networks. J Mol Model 19(4):1763–1777. doi:10.1007/s00894-012-1716-5

    Article  CAS  Google Scholar 

  42. Romero J, Reyes A, David J, Restrepo A (2011) Understanding microsolvation of Li+: structural and energetical analyses. Phys Chem Chem Phys 13(33):15264–15271. doi:10.1039/C1CP20903E

  43. Zapata-Escobar A, Manrique-Moreno M, Guerra D, Hadad CZ, Restrepo A (2014) A combined experimental and computational study of the molecular interactions between anionic ibuprofen and water. J Chem Phys 140(18):184312. doi:10.1063/1.4874258 (184311–184311)

    Article  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc, Wallingford

    Google Scholar 

  45. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. doi:10.1080/00268977000101561

    Article  CAS  Google Scholar 

  46. Tuma C, Daniel Boese A, Handy NC (1999) Predicting the binding energies of H-bonded complexes: a comparative DFT study. Phys Chem Chem Phys 1(17):3939–3947. doi:10.1039/A904357H

    Article  CAS  Google Scholar 

  47. Kitaura K, Morokuma K (1976) A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int J Quantum Chem 10(2):325–340. doi:10.1002/qua.560100211

    Article  CAS  Google Scholar 

  48. Su P, Li H (2009) Energy decomposition analysis of covalent bonds and intermolecular interactions. J Chem Phys 131(1):014102. doi:10.1063/1.3159673

    Article  Google Scholar 

  49. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632. doi:10.1021/ct100641a

    Article  Google Scholar 

  50. Bader RFW (2002) Atoms in molecules. In: Encyclopedia of computational chemistry. Wiley, New York. doi:10.1002/0470845015.caa012

  51. McQuarrie DA (2000) Statistical mechanics. University Science Books, Sausalito, CA

    Google Scholar 

  52. Kar BP, Ramanathan N, Sundararajan K, Viswanathan KS (2014) Matrix isolation and DFT study of the conformations of diethylcarbonate. J Mol Struct 1072:61–68. doi:10.1016/j.molstruc.2014.04.044

    Article  CAS  Google Scholar 

  53. Kar T, Scheiner S (2004) Comparison of cooperativity in CH···O and OH···O hydrogen bonds. J Phys Chem A 108(42):9161–9168. doi:10.1021/jp048546l

    Article  CAS  Google Scholar 

  54. Gu Y, Kar T, Scheiner S (1999) Fundamental properties of the CH···O Interaction: is it a true hydrogen bond? J Am Chem Soc 121(40):9411–9422. doi:10.1021/ja991795g

    Article  CAS  Google Scholar 

  55. May E, Destro R, Gatti C (2001) The unexpected and large enhancement of the dipole moment in the 3,4-bis(dimethylamino)-3-cyclobutene-1,2-dione (DMACB) molecule upon crystallization: a new role of the intermolecular CH···O interactions. J Am Chem Soc 123(49):12248–12254. doi:10.1021/ja010316m

    Article  CAS  Google Scholar 

  56. Kim KS, Mhin BJ, Choi US, Lee K (1992) Ab initio studies of the water dimer using large basis sets: the structure and thermodynamic energies. J Chem Phys 97(9):6649–6662. doi:10.1063/1.463669

    Article  CAS  Google Scholar 

  57. Nielsen IMB, Seidl ET, Janssen CL (1999) Accurate structures and binding energies for small water clusters: the water trimer. J Chem Phys 110(19):9435–9442. doi:10.1063/1.478908

    Article  CAS  Google Scholar 

  58. Xantheas SS (1994) Ab initio studies of cyclic water clusters (H2O) n , n = 1–6. II. Analysis of many‐body interactions. J Chem Phys 100(10):7523–7534. doi:10.1063/1.466846

  59. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506. doi:10.1021/ja100936w

    Article  CAS  Google Scholar 

  60. Thomsen DL, Axson JL, Schrøder SD, Lane JR, Vaida V, Kjaergaard HG (2013) Intramolecular interactions in 2-aminoethanol and 3-aminopropanol. J Phys Chem A 117(40):10260–10273. doi:10.1021/jp405512y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Universidad de Antioquia (Sustainability Strategy 2013-2014) and the Pontifica Universidad Javeriana for financial support of this work. J.D.R. thanks “Colciencias” and the Universidad de Antioquia for his PhD scholarship. Additionally, great gratitude is due to Professor Albeiro Restrepo for permission to use the ASCEC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sol M. Mejía.

Electronic supplementary material

Bidimensional relaxed potential energy surface scan to locate the minimum energy conformation of DEC molecule, comparison of vibrational wavenumbers of the DEC isolated molecule (experimental-computational data), performance of ASCEC algorithm to obtain candidate structures of DEC-(H2O) n , n = 1, 2, 3, 4, heteroclusters, depictions of critical points of electron density obtained by both AIM and NCI methodologies of the most stable heteroclusters.

ESM 1

(PDF 784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ripoll, J.D., Mejía, S.M., Mills, M.J.L. et al. Understanding the azeotropic diethyl carbonate–water mixture by structural and energetic characterization of DEC(H2O) n heteroclusters. J Mol Model 21, 93 (2015). https://doi.org/10.1007/s00894-015-2593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2593-5

Keywords

Navigation