Mathematical modeling and physical reality in noncovalent interactions

Original Paper
Part of the following topical collections:
  1. 6th conference on Modeling & Design of Molecular Materials in Kudowa Zdrój (MDMM 2014)


The Hellmann-Feynman theorem provides a straightforward interpretation of noncovalent bonding in terms of Coulombic interactions, which encompass polarization (and accordingly include dispersion). Exchange, Pauli repulsion, orbitals, etc., are part of the mathematics of obtaining the system’s wave function and subsequently its electronic density. They do not correspond to physical forces. Charge transfer, in the context of noncovalent interactions, is equivalent to polarization. The key point is that mathematical models must not be confused with physical reality.


Noncovalent interactions Hellmann-Feynman theorem Electrostatic potential Polarization Charge transfer Dispersion σ-hole interactions Halogen bonding Hydrogen bonding 


  1. 1.
    Schneider H-J (2009) Angew Chem Int Ed 48:3924–3977CrossRefGoogle Scholar
  2. 2.
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1619–1636Google Scholar
  3. 3.
    Hobza P, Müller-Dethlefs K (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, CambridgeGoogle Scholar
  4. 4.
    Nagy PI (2014) Int J Mol Sci 15:19562–19633CrossRefGoogle Scholar
  5. 5.
    Politzer P, Murray JS (2013) ChemPhysChem 14:278–294CrossRefGoogle Scholar
  6. 6.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  7. 7.
    Politzer P, Murray JS, Clark T (2014) Topics Curr Chem. doi:10.1007/128_2014_568 Google Scholar
  8. 8.
    Stewart RF (1979) Chem Phys Lett 65:335–342CrossRefGoogle Scholar
  9. 9.
    Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New YorkGoogle Scholar
  10. 10.
    Klein CL, Stevens ED (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH, New York, pp 25–64Google Scholar
  11. 11.
    Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979CrossRefGoogle Scholar
  12. 12.
    Politzer P, Murray JS (1998) J Mol Struct (Theochem) 425:107–114CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS (2002) Theor Chem Acct 108:134–142CrossRefGoogle Scholar
  14. 14.
    Murray JS, Politzer P (2011) WIREs Comput Mol Sci 1:153–163CrossRefGoogle Scholar
  15. 15.
    Mo Y, Bao P, Gao J (2011) Phys Chem Chem Phys 13:6760–6775CrossRefGoogle Scholar
  16. 16.
    Riley KE, Hobza P (2008) J Chem Theory Comput 4:232–242CrossRefGoogle Scholar
  17. 17.
    Palusiak M (2010) J Mol Struct (Theochem) 945:89–92CrossRefGoogle Scholar
  18. 18.
    Schrödinger E (1926) Ann Phys 80:437–490CrossRefGoogle Scholar
  19. 19.
    Güttinger P (1932) Z Phys 73:169–184CrossRefGoogle Scholar
  20. 20.
    Pauli W (1933) Handbuch der Physik, 24. Springer, Berlin, p 162Google Scholar
  21. 21.
    Hellmann H (1933) Z Phys 85:180–190CrossRefGoogle Scholar
  22. 22.
    Feynman RP (1939) Phys Rev 56:340–343CrossRefGoogle Scholar
  23. 23.
    Musher JI (1966) Am J Phys 34:267–268CrossRefGoogle Scholar
  24. 24.
    Levine IN (2000) Quantum chemistry, 5th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  25. 25.
    Fernandez Rico J, López R, Ema I, Ramírez G (2005) J Chem Theory Comput 1:1083–1095CrossRefGoogle Scholar
  26. 26.
    Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New YorkGoogle Scholar
  27. 27.
    Berlin T (1951) J Chem Phys 19:208–213CrossRefGoogle Scholar
  28. 28.
    Slater JC (1972) J Chem Phys 57:2389–2396CrossRefGoogle Scholar
  29. 29.
    Bader RFW (2006) Chem Eur J 12:2896–2901CrossRefGoogle Scholar
  30. 30.
    Salem L, Wilson EB Jr (1962) J Chem Phys 36:3421–3427CrossRefGoogle Scholar
  31. 31.
    Hirschfelder JO, Eliason MA (1967) J Chem Phys 47:1164–1169CrossRefGoogle Scholar
  32. 32.
    Fernandez Rico J, López R, Ema I, Ramírez G (2004) Int J Quantum Chem 100:221–230CrossRefGoogle Scholar
  33. 33.
    Deb BM (1981) In: Deb BM (ed) The force concept in chemistry. Van Nostrand Reinhold, New York, pp ix–xiv (Preface)Google Scholar
  34. 34.
    Scerri ER (2000) J Chem Ed 77:1492–1494CrossRefGoogle Scholar
  35. 35.
    Hennemann M, Murray JS, Politzer P, Riley KE, Clark T (2012) J Mol Model 18:2461–2469CrossRefGoogle Scholar
  36. 36.
    Solimannejad M, Malekani M, Alkorta I (2010) J Phys Chem A 114:12106–12111CrossRefGoogle Scholar
  37. 37.
    Scheiner S (2011) J Chem Phys 134:164313, 1–9CrossRefGoogle Scholar
  38. 38.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8CrossRefGoogle Scholar
  39. 39.
    Clark T, Murray JS, Politzer P (2014) Aust J Chem 67:451–456CrossRefGoogle Scholar
  40. 40.
    Clark T, Politzer P, Murray JS (2015) WIREs Comp Mol Sci. doi:10.1002/wcms.1210 Google Scholar
  41. 41.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  42. 42.
    Solimannejad M, Gharabaghi M, Scheiner S (2011) J Chem Phys 134:24312, 1–6CrossRefGoogle Scholar
  43. 43.
    London F (1937) Trans Faraday Soc 33:8–26CrossRefGoogle Scholar
  44. 44.
    Bader RFW, Chandra AK (1968) Can J Chem 46:953–966CrossRefGoogle Scholar
  45. 45.
    Hunt KLC (1990) J Chem Phys 92:1180–1187CrossRefGoogle Scholar
  46. 46.
    Eisenschitz R, London F (1930) Z Phys 60:491–527CrossRefGoogle Scholar
  47. 47.
    Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871CrossRefGoogle Scholar
  48. 48.
    Morokuma K, Kitaura K (1981) In: Politzer P, Truhlar DG (eds) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York, pp 215–242Google Scholar
  49. 49.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  50. 50.
    Sokalski WA, Roszak SM (1991) J Mol Struct (Theochem) 234:387–400CrossRefGoogle Scholar
  51. 51.
    Scheiner S (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 2. VCH, Weinheim, pp 165–218Google Scholar
  52. 52.
    Stone AJ, Misquitta AJ (2009) Chem Phys Lett 473:201–205CrossRefGoogle Scholar
  53. 53.
    Azar RJ, Horn PR, Sundstrom EJ, Head-Gordon M (2013) J Chem Phys 138:84102–84115CrossRefGoogle Scholar
  54. 54.
    Wang W, Wang NB, Zheng W, Tian A (2004) J Phys Chem A 108:1799–1805CrossRefGoogle Scholar
  55. 55.
    Murray JS, Concha MC, Lane P, Hobza P, Politzer P (2008) J Mol Model 14:699–704CrossRefGoogle Scholar
  56. 56.
    Hermansson K (2002) J Phys Chem A 106:4695–4702CrossRefGoogle Scholar
  57. 57.
    Qian W, Krimm S (2002) J Phys Chem A 106:6628–6636CrossRefGoogle Scholar
  58. 58.
    Isaacson W (2007) Einstein: his life and universe. Simon and Schuster, New York, p 549Google Scholar
  59. 59.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  60. 60.
    Rowland RS, Taylor R (1996) J Phys Chem 100:7384–7391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Peter Politzer
    • 1
    • 2
  • Jane S. Murray
    • 1
    • 2
  • Timothy Clark
    • 3
    • 4
  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  2. 2.CleveTheoCompClevelandUSA
  3. 3.Computer-Chemie-Centrum, Department Chemie und PharmacieFriedrich-Alexander-Universitӓt Erlangen-NürnbergErlangenGermany
  4. 4.Centre for Molecular DesignUniversity of PortsmouthPortsmouthUK

Personalised recommendations