Advertisement

A single theoretical descriptor for the bond-dissociation energy of substituted phenols

  • Carolina Aliaga
  • Iriux Almodovar
  • Marcos Caroli Rezende
Original Paper

Abstract

Relative to the corresponding value of phenol, the bond-dissociation energies (BDE) of substituted phenols correlate well with a single descriptor: the Mulliken charge on the oxygen atom of the phenoxyl radical. However, the correlation fails for phenols ortho-substituted with polar groups. Internal reaction coordinates (IRC) for the model reaction of hydrogen abstraction by the hydroperoxyl radical from various 2- and 4-substituted phenols were calculated in order to investigate the role of intra-molecular hydrogen bonds and steric effects on the process. Calculations yielded theoretical values in good agreement with experimental ΔBDE values. The hydrogen-abstraction process was further analyzed in terms of density functional theory (DFT)-based reactivity indices such as local electrophilicity, the Fukui function for nucleophilic attack, and dual descriptor values of the phenolic hydroxyl oxygen along the IRC.

Graphical abstract

Bond-dissociation energies (BDEs) of phenols correlate with a single descriptor. Local electrophilicities, Fukui functions and dual descriptors were used to analyze a model ArO···H···OOH process

Keywords

Quantitative structure–property relationship Bond-dissociation energy of phenols Phenoxyl radicals Hydrogen abstraction DFT-based reactivity indices 

Notes

Acknowledgments

This work was financed by Fondecyt project 1110736. C.A. also thanks Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia (project FB0807).

Supplementary material

894_2015_2572_MOESM1_ESM.doc (139 kb)
ESM 1 (DOC 139 kb)

References

  1. 1.
    Denisov ET, Denisova TG (1999) Handbook of antioxidants: bond dissociation energies, rate constants, activation energies and enthalpies of reactions, 2nd edn. CRC, Boca RatonGoogle Scholar
  2. 2.
    Denisov ET, Afanas'ev IB, Denisova TG, Trepalin SV, Drozdova TI (2005) Oxidation and antioxidants in organic chemistry and biology. CRC, Boca RatonCrossRefGoogle Scholar
  3. 3.
    Denisov ET, Denisova TG (2011) Dissociation energies of O–H bonds of phenols and hydroperoxides; application of thermodynamics to biological and materials science. Tadashi M (ed) InTech, doi:  10.5772/13290, 2011. Available from: http://www.google.cl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CDwQFjAD&url=http%3A%2F%2Fwww.intechopen.com%2Fdownload%2Fpdf%2F13122&ei=_2WOUsHvD8SVrgGk8ICoAw&usg=AFQjCNFAqY-wo2MTyqYK-rRAUZ1YRE6OlQ&sig2=hb5V6mUAkiEp98CjpiTPGA&bvm=bv.56988011,d.aWM
  4. 4.
    Bean GP (2002) Tetrahedron 58:9941–9948CrossRefGoogle Scholar
  5. 5.
    Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173–1183CrossRefGoogle Scholar
  6. 6.
    Da Silva G, Chen CC, Bozzelli JW (2006) Chem Phys Lett 424:42–45Google Scholar
  7. 7.
    Bosque R, Sales J (2003) J Chem Inf Comput Sci 43:637–642CrossRefGoogle Scholar
  8. 8.
    Xue CX, Zhang RS, Liu XH, Yao XJ, Liu MC, Hu ZD, Fan BT (2004) J Chem Inf Comput Sci 44:669–677CrossRefGoogle Scholar
  9. 9.
    Chandra AK, Uchimaru T (2002) Int J Mol Sci 3:407–422CrossRefGoogle Scholar
  10. 10.
    Chermette H (1999) J Comput Chem 20:129–154CrossRefGoogle Scholar
  11. 11.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1873CrossRefGoogle Scholar
  12. 12.
    Gazquez JL (2008) J Mex Chem Soc 52:3–10Google Scholar
  13. 13.
    Romero MD, Mendez F (2003) J Phys Chem A 107:5874–5875CrossRefGoogle Scholar
  14. 14.
    Chattaraj PK, Roy DR (2006) J Phys Chem A Lett 110:11401–11403Google Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc, Wallingford CTGoogle Scholar
  16. 16.
    Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708–5711CrossRefGoogle Scholar
  17. 17.
    Parr RG, Szentpály LV, Liu S (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  18. 18.
    Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091CrossRefGoogle Scholar
  19. 19.
    Chattaraj PK, Chakraborty A, Giri S (2009) J Phys Chem 113:10068–10074CrossRefGoogle Scholar
  20. 20.
    Chattaraj PK, Maiti B, Sarkar U (2003) J Phys Chem A 107:4973–4975CrossRefGoogle Scholar
  21. 21.
    Vařeková RS, Geidl S, Ionescu C-M, Skřehotá O, Kudera M, Sehnal D, Bouchal T, Abagyan R, Huber HJ, Koča J (2011) J Chem Inf Model 51:1795–1806CrossRefGoogle Scholar
  22. 22.
    Kruse H, Goerigk L, Grimme S (2012) J Org Chem 77:10824–10834CrossRefGoogle Scholar
  23. 23.
    The software for these calculations is freely available at the site http://www.thch.uni-bonn.de/tc/gcpd3
  24. 24.
    Tanaka K, Sakai S, Tomiyama S, Nishiyama T, Yamada F (1991) Bull Chem Soc Jpn 64:2677–2680CrossRefGoogle Scholar
  25. 25.
    De Heer MI, Mulder P, Korth H-G, Ingold KU, Lusztyk J (2000) J Am Chem Soc 122:2355–2366CrossRefGoogle Scholar
  26. 26.
    Foti MC, Daquino C, Mackie ID, DiLabio GA, Ingold KU (2008) J Org Chem 73:9270–9282CrossRefGoogle Scholar
  27. 27.
    Mulder M, Saastad OW, Griller DJ (1988) J Am Chem Soc 110:4090–4092CrossRefGoogle Scholar
  28. 28.
    Yoshida T, Hirozumi K, Harada M, Hitaoka S, Chuman H (2011) J Org Chem 76:4564–4570CrossRefGoogle Scholar
  29. 29.
    Cárdenas C, Rabi N, Ayers PW, Morell C, Jaramillo P, Fuentealba P (2009) J Phys Chem A 113:8660–8667CrossRefGoogle Scholar
  30. 30.
    Martínez-Araya JI (2014) J Math Chem. doi: 10.1007/s10910-014-0437-7
  31. 31.
    Santos RMB, Simões JAM (1998) J Phys Chem Ref Data 27:707Google Scholar
  32. 32.
    Lithoxoidou AT, Bakalbassis EG (2005) J Phys Chem A 109:366–377CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Carolina Aliaga
    • 1
    • 2
  • Iriux Almodovar
    • 1
  • Marcos Caroli Rezende
    • 1
  1. 1.Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations