Skip to main content
Log in

Charge transfer complexes of fullerene[60] with porphyrins as molecular rectifiers. A theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular diodes based on charge transfer complexes of fullerene[60] with different metalloporphyrins have been modeled. Their current–voltage characteristics and the rectification ratios (RR) were calculated using direct ab initio method at PBE/def2-SVP level of theory with D3 dispersion correction, for voltages ranging from −2 to +2 V. The highest RR of 32.5 was determined for the complex of fullerene[60] with zinc tetraphenylporphyrin at 0.8 V. Other molecular diodes possessed lower RR, however, all complexes showed RR higher than 1 at all bias voltages. The asymmetric evolutions and alignment of the molecular orbitals with the applied bias were found to be essential for generating the molecular diode rectification behavior. Metal nature of metalloporphyrins and the interaction porphyrin–electrode significantly affect RR of molecular diode. Large metal ions like Cd2+ and Ag2+ in metalloporphyrins disfavor rectification creating conducting channels in two directions, while smaller ions Zn2+ and Cu2+ favor rectification increasing the interaction between gold electrode and porphyrin macrocycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kubatkin S, Danilov A, Hjort M, Cornil J, Brédas JL, Stuhr-Hansen N, Hedegård P, Bjórnholm T (2003) Single-electron transistor of a single organic molecule with access to several redox states. Nature 425:698–701

    Article  CAS  Google Scholar 

  2. Yu LH, Natelson D (2004) The Kondo effect in C60 single-molecule transistors. Nano Lett 4:79–83

    Article  CAS  Google Scholar 

  3. Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, Sperling J, Yacoby A, Bar-Joseph I (2005) Measurement of the conductance of single conjugated molecules. Nature 436:667–680

    Google Scholar 

  4. Song H, Kim Y, Jang YH, Jeong H, Reed MA, Lee T (2009) Observation of molecular orbital gating. Nature 462:1039–1043

    Article  CAS  Google Scholar 

  5. Tour JM (2000) Molecular electronics. Synthesis and testing of components. Acc Chem Res 33:791–804

    Article  CAS  Google Scholar 

  6. Carroll RL, Gorman CB (2002) The genesis of molecular electronics. Angew Chem Int Ed 41:4378–4400

    Article  Google Scholar 

  7. Seminario JM, Zacarias AG, Tour JM (2000) Theoretical study of a molecular resonant tunneling diode. J Am Chem Soc 122:3015–3020

    Article  CAS  Google Scholar 

  8. Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401

    Article  Google Scholar 

  9. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745

    Article  CAS  Google Scholar 

  10. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63:245407

    Article  Google Scholar 

  11. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  12. Mujica V, Ratner MA, Nitzan A (2002) Molecular rectification: Why is it so rare? Chem Phys 281:147–150

    Article  CAS  Google Scholar 

  13. Stokbro K, Taylor J, Brandbyge M (2003) Do aviram − ratner diodes rectify? J Am Chem Soc 125:3674–3675

    Article  CAS  Google Scholar 

  14. Ng MK, Lee DC, Yu L (2002) Molecular diodes based on conjugated diblock co-oligomers. J Am Chem Soc 124:11862–11863

    Article  CAS  Google Scholar 

  15. Ng MK, Yu LP (2002) Synthesis of amphiphilic conjugated diblock oligomers as molecular diodes. Angew Chem Int Ed 41:3598–3601

    Article  CAS  Google Scholar 

  16. Elbing M, Ochs R, Koentopp M, Fischer M, Hanisch CV, Weigend F, Evers F, Weber HB, Mayor M (2005) A single-molecule diode. Proc Natl Acad Sci U S A 102:8815–8820

    Article  CAS  Google Scholar 

  17. Metzger RM, Chen B, Hopfner U, Lakshmikantham MV, Vuillaume D, Kawai T, Wu X, Tachibana H, Hughes TV, Sakurai H, Baldwin W, Hosch C, Cava MP, Brehmer L, Ashwell GJ (1997) Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 119:10455–10466

    Article  CAS  Google Scholar 

  18. Martin AS, Sambles JR (1996) Molecular rectification, photodiodes and symmetry. Nanotechnology 7:401–405

    Article  CAS  Google Scholar 

  19. Metzger RM (1999) Electrical rectification by a molecule: the advent of unimolecular electronic devices. Acc Chem Res 32:950–957

    Article  CAS  Google Scholar 

  20. Metzger RM, Xuand T, Peterson IR (2001) Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J Phys Chem B 105:7280–7290

    Article  CAS  Google Scholar 

  21. Ashwell GJ, Robinson BJ, Amiri MA, Locatelli D, Quici S, Roberto D (2005) Dipole reversal in langmuir–blodgett films of an optically nonlinear dye and its effect on the polarity for molecular rectification. J Mater Chem 15:4203–4205

    Article  CAS  Google Scholar 

  22. Ashwell GJ, Mohib A, Miller JR (2005) Induced rectification from self-assembled monolayers of sterically hindered π-bridged chromophores. J Mater Chem 15:1160–1166

    Article  CAS  Google Scholar 

  23. Ashwell GJ, Chwialkowska A, High LRH (2004) Rectifying Au–S–CnH2n–P3CNQ derivatives. J Mater Chem 14:2848–2851

    Article  CAS  Google Scholar 

  24. Ashwell GJ, Chwialkowska A, High LRH (2004) Au-S-CnH2n-Q3CNQ: self-assembled monolayers for molecular rectification. J Mater Chem 14:2389–2394

    Article  CAS  Google Scholar 

  25. Ashwell GJ, Hamilton R, High LRH (2003) Molecular rectification: asymmetric current–voltage curves from self-assembled monolayers of a donor–(π-bridge)–acceptor dye. J Mater Chem 13:1501–1503

    Article  CAS  Google Scholar 

  26. Jiang P, Morales GM, Youand W, Yu LP (2004) Synthesis of diode molecules and their sequential assembly to control electron transport. Angew Chem Int Ed 43:4471–4475

    Article  CAS  Google Scholar 

  27. Ashwell GJ, Ewington J, Robinson BJ (2006) Organic rectifying junctions fabricated by ionic coupling. Chem Commun 6:618–620

    Article  Google Scholar 

  28. Metzger RM, Baldwin JW, Shumate WJ, Peterson IR, Mani P, Mankey GJ, Morris T, Szulczewski G, Bosi S, Prato M, Comito V, Rubin Y (2003) Electrical rectification in a langmuir − blodgett monolayer of dimethyanilinoazafullerene sandwiched between gold electrodes. J Phys Chem B 107:1021–1027

    Article  CAS  Google Scholar 

  29. Honiuc A, Jaiswal A, Gong A, Ashworth K, Spangler CW, Peterson IR, Dalton LR, Metzger RM (2005) Current rectification in a langmuir − Schaefer monolayer of fullerene-bis-[4-diphenylamino-4′ ‘-(N-ethyl-N-2′”-ethyl)amino-1,4-diphenyl-1,3-butadiene] malonate between Au electrodes. J Phys Chem B 109:857–871

    Article  Google Scholar 

  30. Metzger RM (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803–3834

    Article  CAS  Google Scholar 

  31. Shankara Gayathri S, Patnaik A (2006) Electrical Rectification from a Fullerene[60]-dyad Based Metal–organic–metal Junction. Chem. Commun. 1977–1979.

  32. Garcia M, Guadarrama P, Ramos E, Fomine S (2011) Rectifying behavior of [60]fullerene charge transfer complexes: a theoretical study. Synth Met 161:2390–2396

    Article  CAS  Google Scholar 

  33. Fomine S (2013) Rectifying behavior of charge transfer complexes of tetrakis(dimethylamino)ethene with acceptor molecules: a theoretical study. J Mol Model 19:65–71

    Article  CAS  Google Scholar 

  34. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  35. Perdew LP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  36. TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate Ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  39. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Auxiliary basis sets to approximate coulomb potentials. Chem Phys Lett 242:652–660

    Article  CAS  Google Scholar 

  40. Jiménez Castillo U, Guadarrama P, Fomine S (2013) Large face to face tetraphenylporphyrin/fullerene nanoaggregates. A DFT study. Org Electron 14:2617–2627

    Article  Google Scholar 

  41. Boyd PDW, Hodgson MC, Chaker L, Rickard CEF, Oliver AG, Brothers PJ, Bolskar R, Tham FS, Reed CA (1999) Selective supramolecular porphyrin/fullerene interactions. J Am Chem Soc 121:10487–10495

    Article  CAS  Google Scholar 

  42. Frisch MJ et al. (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford

  43. Peterson KA, Puzzarini C (2005) Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements Theor Chem Acc 114: 283–296

  44. Seminario JM, Zacarias AG, Tour JM (1999) Molecular Current–voltage Characteristics. J Phys Chem A 103:7883–7887

    Article  CAS  Google Scholar 

  45. Ortiz DO, Seminario JM (2007) Direct approach for the electron transport through molecules. J Chem Phys 127:111106

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out with the support of Grant 151277 from National Council for Science and Technology (CONACyT), we also would like to thank General Direction of Computing and Information Technologies and Communication of the National Autonomous University of Mexico (DGTIC-UNAM) for use of supercomputer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei Fomine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montiel, F., Fomina, L. & Fomine, S. Charge transfer complexes of fullerene[60] with porphyrins as molecular rectifiers. A theoretical study. J Mol Model 21, 4 (2015). https://doi.org/10.1007/s00894-015-2570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2570-z

Keywords

Navigation