Skip to main content
Log in

One lithium atom binding with P-nitroaniline: lithium salts or lithium electrides?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recently, both lithium (Li) salts and Li electrides formed by one Li atom interacting with ligand complexes, have been widely investigated. An interesting question emerges: is the configuration of one Li atom interacting with ligand complexes a Li salt or electride? In the present work, four configurations n-Li-PNA (n = 1–4) were obtained by binding one Li atom with the p-nitroaniline (PNA) at different positions to explore this question. The results show that 1-Li-PNA and 2-Li-PNA are typical Li salts, and 4-Li-PNA is a typical Li electride. Significantly, 3-Li-PNA possesses both characteristics of Li salt and electride. At the same time, 3-Li-PNA has the largest first hyperpolarizability (2.9 × 106 au) by ROMP2 method compared with the other three configurations. Furthermore, the first hyperpolarizability of 3-Li-PNA is about 2600 times larger than that of PNA. Further, the vertical ionization potential (VIP) and interaction energy (E int) indicate that 3-Li-PNA is less stable than 1-Li-PNA and 2-Li-PNA (Li salts), but is more stable than 4-Li-PNA (Li electrides).

The present work shows how to distinguish a compound with Li salt or Li electride characteristic and predicts a new compound with both Li salt and Li electride characteristic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) J Am Chem Soc 127:10977–10981

    Article  CAS  Google Scholar 

  2. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) J Am Chem Soc 129:2967–2970

    Article  CAS  Google Scholar 

  3. Muhammad S, Xu H, Liao Y, Kan Y, Su Z (2009) J Am Chem Soc 131:11833–11840

    Article  CAS  Google Scholar 

  4. Muhammad S, Xu H, Su Z (2011) J Phys Chem A 115:923–931

    Article  CAS  Google Scholar 

  5. Chen W, Li ZR, Wu D, Li RY, Sun CC (2004) J Phys Chem B 109:601–608

    Article  Google Scholar 

  6. Ma F, Li ZR, Xu HL, Li ZJ, Li ZS, Aoki Y, Gu FL (2008) J Phys Chem A 112:11462–11467

    Article  CAS  Google Scholar 

  7. Li ZJ, Li ZR, Wang FF, Ma F, Chen MM, Huang XR (2009) Chem Phys Lett 468:319–324

    Article  CAS  Google Scholar 

  8. Xu HL, Li ZR, Wu D, Ma F, Li ZJ, Gu FL (2009) J Phys Chem C 113:4984–4986

    Article  CAS  Google Scholar 

  9. Xu HL, Zhang CC, Sun SL, Su ZM (2012) Organometallics 31:4409–4414

    Article  CAS  Google Scholar 

  10. Zhong RL, Xu HL, Muhammad S, Zhang J, Su ZM (2012) J Mater Chem 22:2196–2202

    Article  CAS  Google Scholar 

  11. Hu YY, Sun SL, Muhammad S, Xu HL, Su ZM (2010) J Phys Chem C 114:19792–19798

    Article  CAS  Google Scholar 

  12. Xu HL, Sun SL, Muhammad S, Su ZM (2011) Theor Chem Acc 128:241–248

    Article  CAS  Google Scholar 

  13. Yu G, Huang XR, Chen W, Sun CC (2011) J Comput Chem 32:2005–2011

    Article  CAS  Google Scholar 

  14. Li ZJ, Li ZR, Wang FF, Luo C, Ma F, Wu D, Wang Q, Huang XR (2009) J Phys Chem A 113:2961–2966

    Article  CAS  Google Scholar 

  15. Dye JL (2003) Science 301:607–608

    Article  CAS  Google Scholar 

  16. Redko MY, Jackson JE, Huang RH, Dye JL (2005) J Am Chem Soc 127:12416–12422

    Article  CAS  Google Scholar 

  17. Dye JL (2009) Acc Chem Res 42:1564–1572

    Article  CAS  Google Scholar 

  18. Green MLH, Marder SR, Thompson ME, Bandy JA, Bloor D, Kolinsky PV, Jones RJ (1987) Nature 330:360–362

    Article  CAS  Google Scholar 

  19. Eaton DF (1991) Science 253:281–287

    Article  CAS  Google Scholar 

  20. Zyss J, Ledoux I (1994) Chem Rev 94:77–105

    Article  CAS  Google Scholar 

  21. Meyers F, Marder SR, Pierce BM, Bredas JL (1994) J Am Chem Soc 116:10703–10714

    Article  CAS  Google Scholar 

  22. Marder SR, Torruellas WE, Blanchard-Desce M, Ricci V, Stegeman GI, Gilmour S, Brédas JL, Li J, Bublitz GU, Boxer SG (1997) Science 276:1233–1236

    Article  CAS  Google Scholar 

  23. Di Bella S (2001) Chem Soc Rev 30:355–366

    Article  Google Scholar 

  24. Maury O, Viau L, Sénéchal K, Corre B, Guégan JP, Renouard T, Ledoux I, Zyss J, Le Bozec H (2004) Chem Eur J 10:4454–4466

    Article  CAS  Google Scholar 

  25. Mançois F, Pozzo JL, Pan J, Adamietz F, Rodriguez V, Ducasse L, Castet F, Plaquet A, Champagne B (2009) Chem Eur J 15:2560–2571

    Article  Google Scholar 

  26. Champagne B, Plaquet A, Pozzo JL, Rodriguez V, Castet F (2012) J Am Chem Soc 134:8101–8103

    Article  CAS  Google Scholar 

  27. Marder SR, Beratan DN, Cheng LT (1991) Science 252:103–106

    Article  CAS  Google Scholar 

  28. Blanchard-Desce M, Alain V, Bedworth PV, Marder SR, Fort A, Runser C, Barzoukas M, Lebus S, Wortmann R (1997) Chem Eur J 3:1091–1104

    Article  CAS  Google Scholar 

  29. Nakano M, Fujita H, Takahata M, Yamaguchi K (2002) J Am Chem Soc 124:9648–9655

    Article  CAS  Google Scholar 

  30. Coe BJ, Jones LA, Harris JA, Brunschwig BS, Asselberghs I, Clays K, Persoons A (2002) J Am Chem Soc 125:862–863

    Article  Google Scholar 

  31. Geskin VM, Lambert C, Brédas JL (2003) J Am Chem Soc 125:15651–15658

    Article  CAS  Google Scholar 

  32. Coe BJ, Foxon SP, Harper EC, Helliwell M, Raftery J, Swanson CA, Brunschwig BS, Clays K, Franz E, Garín J, Orduna J, Horton PN, Hursthouse MB (2010) J Am Chem Soc 132:1706–1723

    Article  CAS  Google Scholar 

  33. Zhong RL, Zhang J, Muhammad S, Hu YY, Xu HL, Su ZM (2011) Chem Eur J 17:11773–11779

    Article  CAS  Google Scholar 

  34. Van Cleuvenbergen S, Asselberghs I, García-Frutos EM, Gómez-Lor B, Clays K, Pérez-Moreno J (2012) J Phys Chem C 116:12312–12321

    Article  Google Scholar 

  35. Wu HQ, Zhong RL, Kan YH, Sun SL, Zhang M, Xu HL, Su ZM (2013) J Comput Chem 34:952–957

    Article  CAS  Google Scholar 

  36. Serra-Crespo P, van der Veen MA, Gobechiya E, Houthoofd K, Filinchuk Y, Kirschhock CEA, Martens JA, Sels BF, De Vos DE, Kapteijn F, Gascon J (2012) J Am Chem Soc 134:8314–8317

    Article  CAS  Google Scholar 

  37. Karamanis P, Pouchan C (2012) J Phys Chem C 116:11808–11819

    Article  CAS  Google Scholar 

  38. Soscún H, Castellano O, Bermúdez Y, Toro C, Cubillán N, Hinchliffe A, Phu XN (2006) Int J Quantum Chem 106:1130–1137

    Article  Google Scholar 

  39. Sok S, Willow SY, Zahariev F, Gordon MS (2011) J Phys Chem A 115:9801–9809

    Article  CAS  Google Scholar 

  40. Sim F, Chin S, Dupuis M, Rice JE (1993) J Phys Chem 97:1158–1163

    Article  CAS  Google Scholar 

  41. Karna SP, Prasad PN, Dupuis M (1991) J Chem Phys 94:1171–1181

    Article  CAS  Google Scholar 

  42. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  43. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  44. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  45. Nakano M, Nitta T, Yamaguchi K, Champagne B, Botek E (2004) J Phys Chem A 108:4105–4111

    Article  CAS  Google Scholar 

  46. Maroulis G (1991) J Chem Phys 94:1182–1190

    Article  CAS  Google Scholar 

  47. Maroulis G, Xenides D, Hohm U, Loose A (2001) J Chem Phys 115:7957–7967

    Article  CAS  Google Scholar 

  48. Gaussian 09, Revision A. 02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, RobbMA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, CossiM, ScalmaniG, RegaN, PeterssonGA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian, Inc, Wallingford, CT

  49. Qian HY, Yin ZG, Jia J, Zhou N, Feng LQ (2006) Acta Crystallogr Sect E 62:o5048–o5049

    Article  CAS  Google Scholar 

  50. Kassaee MZ, Jalalimanesh N, Musavi SM (2007) J Mol Struct THEOCHEM 816:153–160

    Article  CAS  Google Scholar 

  51. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer P v R (2005) Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  52. Xu S, Wang C, Cui Y (2010) Int J Quantum Chem 110:1287–1294

    Article  CAS  Google Scholar 

  53. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  54. Lu T, Chen F (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

  55. Oudar JL (1977) J Chem Phys 67:446–457

    Article  CAS  Google Scholar 

  56. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from National Science Foundation of China (NSFC) (21003019, 21473026), the Science and Technology Development Planning of Jilin Province (201201062 and 20140101046JC), the Computing Center of Jilin Province provided essential support and H.-L.X. acknowledges support from the Hong Kong Scholars Program. And Project funded by China Postdoctoral Science Foundation 2014 M560227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Liang Xu or Zhong-min Su.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wu, HQ., Sun, SL. et al. One lithium atom binding with P-nitroaniline: lithium salts or lithium electrides?. J Mol Model 21, 23 (2015). https://doi.org/10.1007/s00894-014-2560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2560-6

Keywords

Navigation