Advertisement

Journal of Molecular Modeling

, 20:2549 | Cite as

Ground- and excited-state stability of the conformers of 3,5-dinitrocatechol and its complexes with W(VI) and V(V): combined theoretical and experimental study

  • V. B. DelchevEmail author
  • K. B. Gavazov
  • I. G. Shterev
Original Paper

Abstract

We performed a theoretical and experimental study of the (photo)stability of 3,5-dinitrocatechol (DNC) and its complexes with W(VI) and V(V). The investigation showed that irradiation of DNC is accompanied by a parallel proton migration from the hydroxy group to the neighboring NO2 group, which results in a large Stokes shift of the absorption and emission bands. It was found that W(VI) forms a more stable 1:2 complex than V(V). The complex is stable even under UV irradiation. The most stable WVI(DNC)2 conformer is comprised of two mutually perpendicular DNC molecules as ligands.

Keywords

BLYP calculations CC2 calculations Complexes 3,5-Dinitrocatechol Photostability 

Notes

Acknowledgments

The authors thank Prof. Petko Ivanov [Institute of Organic Chemistry, Bulgarian Academy of Sciences (BAS)] for the given computational quota and technical support for the CC2 calculations (Linux-cluster MADARA), project RNF01/0110. We thank also Associate Prof. Dr Timcheva and Assistant Professor Nadya Kyuchukova (Institute of Organic chemistry, BAS) for registration of the fluorescence spectra, and Mrs. Neda Danova (University of Plovdiv, Dept. Analytical Chemistry) for experimental registration of the UV spectra.

Supplementary material

894_2014_2549_MOESM1_ESM.doc (1.8 mb)
ESM 1 (DOC 1817 kb)

References

  1. 1.
    Gavazov KB (2012) Acta Chim Slov 59:1–17Google Scholar
  2. 2.
    Vidgren J, Svensson LA, Liljas A (1994) Nature 368:354–358CrossRefGoogle Scholar
  3. 3.
    Palma PN, Rodrigues ML, Archer M, Bonifácio MJ, Loureiro AI, Learmonth DA, Carrondo MA, Soares-da-Silva P (2006) Mol Pharmacol 70:143–153Google Scholar
  4. 4.
    Palma PN, Bonifácio MJ, Loureiro AI, Wright LC, Learmonth DA, Soares-da-Silva P (2003) Drug Metab Dispos 31:250–258CrossRefGoogle Scholar
  5. 5.
    Lautala P, Kivimaa M, Salomies H, Elovaara E, Taskinen J (1997) Pharm Res 14:1444–1448CrossRefGoogle Scholar
  6. 6.
    Rutherford K, Le Trong I, Stenkamp RE, Parson WW (2008) J Mol Biol 380:120–130CrossRefGoogle Scholar
  7. 7.
    Kitanovski Z, Grgić I, Vermeylen R, Claeys M, Maenhaut W (2012) J Chromatogr A 1268:35–43CrossRefGoogle Scholar
  8. 8.
    Iinuma Y, Böge O, Gräfe R, Herrmann H (2010) Environ Sci Technol 44:8453–8459CrossRefGoogle Scholar
  9. 9.
    Pakala S, Gorla P, Pinjari A, Krovidi R, Baru R, Yanamandra M, Merrick M, Siddavattam D (2007) Appl Microbiol Biol 73:1452–1462CrossRefGoogle Scholar
  10. 10.
    Haigler BE, Spain JC (1991) Appl Environ Microbiol 57:3156–3162Google Scholar
  11. 11.
    Haigler BE, Suen WC, Spain JC (1996) J Bacteriol 178:6019–6024Google Scholar
  12. 12.
    Ju K-S, Parales RE (2010) Microbiol Mol Biol Rev 74:250–272CrossRefGoogle Scholar
  13. 13.
    Liu Y, Wang D, Sun B, Zhu X (2010) J Hazard Mater 181:1010–1015CrossRefGoogle Scholar
  14. 14.
    Chaliha S, Bhattacharyya KG, Paul P (2008) J Chem Technol Biotechnol 83:1353–1363CrossRefGoogle Scholar
  15. 15.
    Schulte-Frohlinde D, Reutebuch G, von Sonntag C (1973) Int J Radiat Phys Chem 5:331–342CrossRefGoogle Scholar
  16. 16.
    Poluektova EN, Shitareva GG (1972) Zh Anal Khim 27:1301–1304Google Scholar
  17. 17.
    Marczenko Z, Lobinski R (1988) Talanta 35:1001–1004CrossRefGoogle Scholar
  18. 18.
    Lobinski R, Marczenko Z (1988) Anal Sci 4:629–35CrossRefGoogle Scholar
  19. 19.
    Lobinski R, Marczenko Z (1990) Microchem J 42:197–205CrossRefGoogle Scholar
  20. 20.
    Marczenko Z, Balcerzak M (2007) Metod’y spektrofotometrii v UF I vidimoj oblastyakh v neorganicheskom analize. Laboratoriya znanij, BinomGoogle Scholar
  21. 21.
    Dimitrov A, Lekova V, Gavazov K, Boyanov B (2007) J Anal Chem 62:122–125CrossRefGoogle Scholar
  22. 22.
    Racheva P, Gavazov K, Lekova V, Dimitrov A (2008) J Iran Chem Res 1:113–121Google Scholar
  23. 23.
    Lekova V, Racheva P, Stojnova K, Dimitrov A, Gavazov K (2010) Chemija 21:106–111Google Scholar
  24. 24.
    Racheva PV, Gavazov KB, Lekova VD, Dimitrov AN (2010) J Anal Chem 65:21–25CrossRefGoogle Scholar
  25. 25.
    Sommer L, Ackermann G, Burns DT, Savvin SB (1990) Pure Appl Chem 62:2147–2166Google Scholar
  26. 26.
    Cornard J-P, Rasmiwetti, Merlin J-C (2005) Chem Phys 309:239–249CrossRefGoogle Scholar
  27. 27.
    Cornard J-P, Lapouge C, Merlin J-C (2007) Chem Phys 340:273–282CrossRefGoogle Scholar
  28. 28.
    Riley KE, Pitonak M, Jurecka P, Hobza P (2010) Chem Rev 110:5023–5063CrossRefGoogle Scholar
  29. 29.
    Frisch MT et al. (2004) Gaussian 03, Revision D.01. Gaussian, WallingfordGoogle Scholar
  30. 30.
    Hättig C, Weigend F (2000) J Chem Phys 113:5154–5161CrossRefGoogle Scholar
  31. 31.
    Hammond GS (1955) J Am Chem Soc 77:334–338CrossRefGoogle Scholar
  32. 32.
    Leffler JE (1953) Science 117:340–341CrossRefGoogle Scholar
  33. 33.
    Taylor MJC, Staden JF (1994) Analyst 119:1263–1276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. B. Delchev
    • 1
    Email author
  • K. B. Gavazov
    • 1
  • I. G. Shterev
    • 2
  1. 1.Faculty of ChemistryUniversity of PlovdivPlovdivBulgaria
  2. 2.Department Inorganic and Physical ChemistryUniversity of Food TechnologiesPlovdivBulgaria

Personalised recommendations