Journal of Molecular Modeling

, 20:2538 | Cite as

Aromaticity, response, and nonlinear optical properties of sumanene modified with boron and nitrogen atoms

  • Stevan Armaković
  • Sanja J. Armaković
  • Jovan P. Šetrajčić
  • Vladimir Holodkov
Original Paper

Abstract

We investigated the effects of substitution on the sumanene benzylic CH2 groups with BH and NH groups using density functional theory computations. Our study shows that various properties of sumanene could be finely tuned for the application in the areas closely related to the materials science. Structural properties are significantly altered with such modifications and other properties as well. Charge distributions were evaluated through natural population analysis (NPA), while stability of investigated structures was investigated using quantum molecular descriptors. Using molecular orbital analysis further insight into the effects of substitution was obtained. Potential of sumanene as a candidate for application in the field of organic electronics is assessed through calculations of exciton binding energy. Non-linear optical properties of investigated structures were investigated using the first hyperpolarizability tensor. Special attention was paid to the aromaticity of sumanene. This property was evaluated employing NICS parameter while for detailed study of obtained results we used NBO and NBOdel analysis.

Graphical Abstract

Sumanene modified with boron and nitrogen atomsᅟ

Keywords

Aromaticity DFT Exciton binding energy NBO NBOdel NLO properties Sumanene 

Supplementary material

894_2014_2538_MOESM1_ESM.jpg (1007 kb)
ESM 1(JPEG 1006 kb)
894_2014_2538_MOESM2_ESM.doc (1.6 mb)
ESM 2(DOC 1651 kb)

References

  1. 1.
    Tanikawa T, Saito M, Guo JD, Nagase S (2011) Synthesis, structures and optical properties of trisilasumanene and its related compounds. Org Biomol Chem 9:1731–1735CrossRefGoogle Scholar
  2. 2.
    Szumna A (2010) Inherently chiral concave molecules—from synthesis to applications. Chem Soc Rev 39:4274–4285CrossRefGoogle Scholar
  3. 3.
    Sakurai H, Daiko T, Hirao T (2003) A synthesis of sumanene, a fullerene fragment. Science 301:1878CrossRefGoogle Scholar
  4. 4.
    Wu T-C, Hsin H-J, Kuo M-Y, Li C-H, Wu Y-T (2011) Synthesis and structural analysis of a highly curved Buckybowl containing corannulene and sumanene fragments. J Am Chem Soc 133:16319–16321CrossRefGoogle Scholar
  5. 5.
    Wu Y-T, Siegel JS (2006) Aromatic molecular-bowl hydrocarbons: synthetic derivatives, their structures, and physical properties. Chem Rev 106:4843–4867CrossRefGoogle Scholar
  6. 6.
    Amaya T, Mori K, Wu H-L, Ishida S, Nakamura J-i, Murata K, Hirao T (2007) Synthesis and characterization of π-extended bowl-shaped π-conjugated molecules. Chem Commun 1902–1904Google Scholar
  7. 7.
    Amaya T, Seki S, Moriuchi T, Nakamoto K, Nakata T, Sakane H, Saeki A, Tagawa S, Hirao T (2008) Anisotropic electron transport properties in sumanene crystal. J Am Chem Soc 131:408–409CrossRefGoogle Scholar
  8. 8.
    Higashibayashi S, Tsuruoka R, Soujanya Y, Purushotham U, Sastry GN, Seki S, Ishikawa T, Toyota S, Sakurai H (2012) Trimethylsumanene: enantioselective synthesis, substituent effect on bowl structure, inversion energy, and electron conductivity. Bull Chem Soc Jpn 85:450–467CrossRefGoogle Scholar
  9. 9.
    Armaković S, Armaković SJ, Šetrajčić JP (2013) Hydrogen storage properties of sumanene. Int J Hydrog Energy 38:12190–12198Google Scholar
  10. 10.
    Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2013) Optical and bowl-to-bowl inversion properties of sumanene substituted on its benzylic positions; a DFT/TD-DFT study. Chem Phys Lett 578:156–161CrossRefGoogle Scholar
  11. 11.
    Priyakumar UD, Sastry GN (2001) First ab initio and density functional study on the structure, bowl-to-bowl inversion barrier, and vibrational spectra of the elusive C 3 v-Symmetric Buckybowl: Sumanene, C21H12. J Phys Chem A 105:4488–4494CrossRefGoogle Scholar
  12. 12.
    Purushotham U, Sastry GN (2013) Conjugate acene fused buckybowls: evaluating their suitability for p-type, ambipolar and n-type air stable organic semiconductors. PCCP 15:5039–5048CrossRefGoogle Scholar
  13. 13.
    Marder SR, Kippelen B, Jen AK-Y, Peyghambarian N (1997) Design and synthesis of chromophores and polymers for electro-optic and photorefractive applications. Nature 388:845–851CrossRefGoogle Scholar
  14. 14.
    Ikeda H, Sakai T, Kawasaki K (1991) Nonlinear optical properties of cyanine dyes. Chem Phys Lett 179:551–554CrossRefGoogle Scholar
  15. 15.
    Katz H, Singer K, Sohn J, Dirk C, King L, Gordon H (1987) Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules. J Am Chem Soc 109:6561–6563CrossRefGoogle Scholar
  16. 16.
    Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven T, Kudin K, Burant J (2008) Gaussian 03, revision C. 02Google Scholar
  17. 17.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098CrossRefGoogle Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785CrossRefGoogle Scholar
  19. 19.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  20. 20.
    Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  21. 21.
    Carpenter J, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct THEOCHEM 169:41–62CrossRefGoogle Scholar
  22. 22.
    O’boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package‐independent computational chemistry algorithms. J Comput Chem 29:839–845CrossRefGoogle Scholar
  23. 23.
    Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700CrossRefGoogle Scholar
  24. 24.
    Adhikari K, Ray AK (2012) Stabilities of silicon carbide nanocones: a nanocluster-based study. J Nanoparticle Res 14Google Scholar
  25. 25.
    Zdetsis AD (2011) Structural, cohesive, electronic, and aromatic properties of selected fully and partially hydrogenated carbon fullerenes. J Phys Chem C 115:14507–14516CrossRefGoogle Scholar
  26. 26.
    Chen H, Ray AK (2013) Atomic hydrogen and oxygen adsorptions in single-walled zigzag silicon nanotubes. J Nanoparticle Res 15:1–14Google Scholar
  27. 27.
    Ramachandran K, Deepa G, Namboori K (2008) Computational chemistry and molecular modeling. Springer, HeidelbergGoogle Scholar
  28. 28.
    Scanlon L, Feld W, Balbuena P, Sandi G, Duan X, Underwood K, Hunter N, Mack J, Rottmayer M, Tsao M (2009) Hydrogen storage based on physisorption. J Phys Chem B 113:4708–4717CrossRefGoogle Scholar
  29. 29.
    Praveena R, Sadasivam K, Kumaresan R, Deepha V, Sivakumar R (2013) Experimental and DFT studies on the antioxidant activity of a C-glycoside from<i>Rhynchosia capitata</i>. Spectrochim Acta A Mol Biomol Spectrosc 103:442–452CrossRefGoogle Scholar
  30. 30.
    Pearson R (1997) Chemical hardness–applications from molecules to solids. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Fuentealba P, Simon-Manso Y, Chattaraj PK (2000) Molecular electronic excitations and the minimum polarizability principle. J Phys Chem A 104:3185–3187CrossRefGoogle Scholar
  32. 32.
    Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Educ 64:561CrossRefGoogle Scholar
  33. 33.
    Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855CrossRefGoogle Scholar
  34. 34.
    Chandrakumar K, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. J Phys Chem A 108:6661–6666CrossRefGoogle Scholar
  35. 35.
    Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856CrossRefGoogle Scholar
  36. 36.
    Koopmans T (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1:104–113CrossRefGoogle Scholar
  37. 37.
    Pearson RG (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem 54:1423–1430CrossRefGoogle Scholar
  38. 38.
    Shyma Mary Y, El-Brollosy NR, El-Emam AA, Al-Deeb OA, Jojo P, Yohannan Panicker C, Alsenoy CV (2014) Vibrational spectra, NBO analysis, HOMO-LUMO and first hyperpolarizability of 2-{[(2-Methylprop-2-en-1-yl) oxy] methyl}-6-phenyl-2, 3, 4, 5-tetrahydro-1, 2, 4-triazine-3, 5-dione, a potential chemotherapeutic agent based on density functional theory calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.Google Scholar
  39. 39.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  40. 40.
    Chandrakumar K, Ghanty TK, Ghosh SK (2005) Ab initio studies on the polarizability of lithium clusters: some unusual results. Int J Quantum Chem 105:166–173CrossRefGoogle Scholar
  41. 41.
    Balachandran V, Rajeswari S, Lalitha S (2013) Vibrational spectra, NBO analysis, first order hyperpolarizabilities, thermodynamic functions and NMR chemical shielding anisotropy (CSA) parameters of 5-nitro-2-furoic acid by <i> ab initio</i> HF and DFT calculations. Spectrochim Acta A Mol Biomol Spectrosc 113:268–280CrossRefGoogle Scholar
  42. 42.
    Mary YS, Panicker CY, Varghese HT, Van Alsenoy C, Procházková M, Ševčík R, Pazdera P (2014) Acid–base properties, FT-IR, FT-Raman spectroscopy and computational study of 1-(pyrid-4-yl) piperazine. Spectrochim Acta A Mol Biomol Spectrosc 121:436–444CrossRefGoogle Scholar
  43. 43.
    Sun S-L, Hu Y-Y, Xu H-L, Su Z-M, Hao L-Z (2012) Probing the linear and nonlinear optical properties of nitrogen-substituted carbon nanotube. J Mol Model 18:3219–3225CrossRefGoogle Scholar
  44. 44.
    Souza LAD, Silva AMD Jr, Junqueira G, Carvalho ACM, Santos HFD (2010) Theoretical study of structure and non-linear optical properties of Zn (II) porphyrin adsorbed on carbon nanotubes. J Mol Struct THEOCHEM 959:92–100CrossRefGoogle Scholar
  45. 45.
    Karunakaran V, Balachandran V (2014) Experimental and theoretical investigation of the molecular structure, conformational stability, hyperpolarizability, electrostatic potential, thermodynamic properties and NMR spectra of pharmaceutical important molecule: 4′-Methylpropiophenone. Spectrochim Acta A Mol Biomol Spectrosc 128:1–14CrossRefGoogle Scholar
  46. 46.
    Renjith R, Mary YS, Panicker CY, Varghese HT, Pakosińska-Parys M, Van Alsenoy C, Manojkumar TK (2014) Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 1,7,8,9-tetrachloro-10,10-dimethoxy-4-[3-(4-phenylpiperazin-1-yl)propyl]-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione by density functional methods. Spectrochim Acta A Mol Biomol Spectrosc 124:500–513CrossRefGoogle Scholar
  47. 47.
    Al-Tamimi A-MS, El-Emam AA, Al-Deeb OA, Prasad O, Pathak SK, Srivastava R, Sinha L (2014) Structural and spectroscopic characterization of a novel potential anti-inflammatory agent 3-(adamantan-1-yl)-4-ethyl-1H-1,2,4-triazole-5(4H)thione by first principle calculations. Spectrochim Acta A Mol Biomol Spectrosc 124:108–123CrossRefGoogle Scholar
  48. 48.
    Schwenn P, Burn P, Powell B (2011) Calculation of solid state molecular ionisation energies and electron affinities for organic semiconductors. Org Electron 12:394–403CrossRefGoogle Scholar
  49. 49.
    Nayak PK, Periasamy N (2009) Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using ‘solvation’model and DFT. Org Electron 10:1396–1400CrossRefGoogle Scholar
  50. 50.
    Pedretti A, Mazzolari A, Vistoli G. Vega ZZ (2008) a versatile toolkit for drug design and protein modelling. In: Congreso de Fisicoquímica Teórica y ComputacionalGoogle Scholar
  51. 51.
    Hebard A, Haddon R, Fleming R, Kortan A (1991) Deposition and characterization of fullerene films. Appl Phys Lett 59:2109–2111CrossRefGoogle Scholar
  52. 52.
    Ren S, Wang Y, Rao A, McRae E, Holden J, Hager T, Wang K, Lee WT, Ni H, Selegue J (1991) Ellipsometric determination of the optical constants of C60 (Buckminsterfullerene) films. Appl Phys Lett 59:2678–2680CrossRefGoogle Scholar
  53. 53.
    Wang Y, Holden J, Rao A, Lee W-T, Bi X, Ren S, Lehman G, Hager G, Eklund P (1992) Interband dielectric function of c 60 and m 6 c 60 (m= k, rb, cs). Phys Rev B 45:14396CrossRefGoogle Scholar
  54. 54.
    Hermann H, Zagorodniy K, Touzik A, Taut M, Seifert G (2005) Computer simulation of fullerene-based ultra-low <i> k</i> dielectrics. Microelectron Eng 82:387–392CrossRefGoogle Scholar
  55. 55.
    Broczkowska K, Klocek J, Friedrich D, Henkel K, Kolanek K, Urbanowicz A, Schmeisser D, Miller M, Zschech E (2010) Fullerene based materials for ultra-low-k application. In: Students and Young Scientists Workshop, 2010 I.E. International, 2010, pp. 39–43Google Scholar
  56. 56.
    Zagorodniy K, Hermann H, Taut M (2007) Molecular design of ultralow-k insulator materials. Mater Sci 0137–1339:25Google Scholar
  57. 57.
    Bai H, Ji W, Liu X, Wang L, Yuan N, Ji Y (2012) Doping the Buckminsterfullerene by substitution: density functional theory studies of C 59 X (X= B, N, Al, Si, P, Ga, Ge, and As). J Chem doi:10.1155/2013/571709Google Scholar
  58. 58.
    Li Q, Xue Q, Hao L, Gao X, Zheng Q (2008) Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Compos Sci Technol 68:2290–2296CrossRefGoogle Scholar
  59. 59.
    Yuan J-K, Yao S-H, Dang Z-M, Sylvestre A, Genestoux M, Bail J (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 115:5515–5521CrossRefGoogle Scholar
  60. 60.
    Nayak PK (2013) Exciton binding energy in small organic conjugated molecule. Synth Met 174:42–45CrossRefGoogle Scholar
  61. 61.
    Hill I, Kahn A, Soos Z, Pascal R Jr (2000) Charge-separation energy in films of π-conjugated organic molecules. Chem Phys Lett 327:181–188CrossRefGoogle Scholar
  62. 62.
    Djurovich PI, Mayo EI, Forrest SR, Thompson ME (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org Electron 10:515–520CrossRefGoogle Scholar
  63. 63.
    Wang F, Dukovic G, Brus LE, Heinz TF (2005) The optical resonances in carbon nanotubes arise from excitons. Science 308:838–841CrossRefGoogle Scholar
  64. 64.
    Grosso G, Graves J, Hammack AT, High AA, Butov LV, Hanson M, Gossard A (2009) Excitonic switches operating at around 100 K. Nat Photonics 3:577–580CrossRefGoogle Scholar
  65. 65.
    Wang F, Dukovic G, Brus LE, Heinz TF (2004) Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys Rev Lett 92:177401CrossRefGoogle Scholar
  66. 66.
    Huang L, Pedrosa HN, Krauss TD (2004) Ultrafast ground-state recovery of single-walled carbon nanotubes. Phys Rev Lett 93:017403CrossRefGoogle Scholar
  67. 67.
    Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860CrossRefGoogle Scholar
  68. 68.
    High AA, Novitskaya EE, Butov LV, Hanson M, Gossard AC (2008) Control of exciton fluxes in an excitonic integrated circuit. Science 321:229–231CrossRefGoogle Scholar
  69. 69.
    Sakurai H, Daiko T, Sakane H, Amaya T, Hirao T (2005) structural elucidation of sumanene and generation of its benzylic anions. J Am Chem Soc 127:11580–11581CrossRefGoogle Scholar
  70. 70.
    Armaković S, Armaković SJ, Šetrajčić JP, Džambas LD (2013) Specificities of boron disubstituted sumanenes. J Mol Model 19:1153–1166CrossRefGoogle Scholar
  71. 71.
    Dimitrić Marković JM, Marković ZS, Krstić JB, Milenković D, Lučić B, Amić D (2013) Interpretation of the IR and Raman spectra of morin by density functional theory and comparative analysis. Vib Spectrosc 64:1–9CrossRefGoogle Scholar
  72. 72.
    Marković Z, Milenković D, Đorović J, Dimitrić Marković J, Lučić B, Amić D (2013) A DFT and PM6 study of free radical scavenging activity of ellagic acid. Monatsh Chem Chem Mon 144:803–812CrossRefGoogle Scholar
  73. 73.
    Markovic Z, Amic D, Milenkovic D, Dimitric-Markovic JM, Markovic S (2013) Examination of the chemical behavior of the quercetin radical cation towards some bases. PCCP 15:7370–7378CrossRefGoogle Scholar
  74. 74.
    Weinhold F (2012) Discovering chemistry with natural bond orbitals. Wiley, New YorkGoogle Scholar
  75. 75.
    Jiao H, Schleyer PR (1996) Is kekulene really superaromatic? Angew Chem Int Ed Engl 35:2383–2386CrossRefGoogle Scholar
  76. 76.
    Poater J, Fradera X, Duran M, Sola M (2003) The delocalization index as an electronic aromaticity criterion: application to a series of planar polycyclic aromatic hydrocarbons. Chem Eur J 9:400–406CrossRefGoogle Scholar
  77. 77.
    Holodkov V (2008) Development of general model for expert system of e-bussiness. University Business Academy, Novi SadGoogle Scholar
  78. 78.
    Hohne BA, Pierce TH (1989) Expert system applications in chemistry. ACS Symposium Series; American Chemical Society: Washington, DCGoogle Scholar
  79. 79.
    Tennyson J, Brown DB, Munro JJ, Rozum I, Varambhia HN, Vinci N (2007) Quantemol-N: an expert system for performing electron molecule collision calculations using the R-matrix method. In: Journal of Physics: Conference Series, IOP Publishing, 2007, Vol 86, p 012001Google Scholar
  80. 80.
    Inc E. Exsys Inc (2013) The Expert System Experts Home Page. Vol 2013. http://www.exsys.com/Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stevan Armaković
    • 1
  • Sanja J. Armaković
    • 2
  • Jovan P. Šetrajčić
    • 1
  • Vladimir Holodkov
    • 3
  1. 1.Faculty of Sciences, Department of PhysicsUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental ProtectionUniversity of Novi SadNovi SadSerbia
  3. 3.Faculty of Sport and Tourism - TIMSEducons UniversityNovi SadSerbia

Personalised recommendations