Skip to main content
Log in

Targeting a cluster of arginine residues of neuraminidase to avoid oseltamivir resistance in influenza A (H1N1): a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Following the influenza A (H1N1) pandemic in Mexico and around the world in 2009, the numbers of oseltamivir-resistant clinical cases have increased through a mechanism that remains unclear. In this work, we focus on studying the mutated NA structures ADA71175 (GenBank) and 3CKZ (PDB ID). Recently crystallized NA (PDB ID: 3NSS) was used as a wild-type structure and template to construct the three-dimensional (3D) structure of ADA71175. Then, the NA mutants and 3NSS natives as well as their refined monomer structures as determined through MD simulations (snapshots at 50 ns) were used as models to perform a docking study using a set of aryl-oseltamivir derivatives. These aryl-oseltamivir derivatives have better recognition properties than oseltamivir because of cation–π interactions with a cluster of Arg residues (118, 292, and 371) at the binding site. This cluster of Arg residues represents a potential binding site for aryl-oseltamivir derivatives that are potentially new NA inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhong S, MacKerell AD Jr (2007) J Chem Inf Model 47:2303–2315

    Article  CAS  Google Scholar 

  2. Navarro-Polanco RA, Moreno Galindo EG, Ferrer-Villada T, Arias M, Rugby JR, Sanchez-Chapula JA, Tristani-Firouzi M (2011) J Physiol 589(Pt 7):1741–1753. doi:10.1113/jphysiol.2010.204107

  3. Vijayan R, Sahai MA, Czajkowski T, Biggin PC (2010) Phys Chem Chem Phys 12:14057–14066

    Article  CAS  Google Scholar 

  4. Demina A, Varughese KI, Barbot J, Forman L, Beutler E (1998) Blood 92:647–652

    CAS  Google Scholar 

  5. Nguyen AP, Downard KM (2013) Analyst 138:1787–1793

  6. Chen LF, Dailey NJ, Rao AK, Fleischauer AT, Greenwald I, Deyde VM, Moore ZS, Anderson DJ, Duffy J, Gubareva LV, Sexton DJ, Fry AM, Srinivasan A, Wolfe CR (2011) J Infect Dis 203:838–846

    Article  CAS  Google Scholar 

  7. Longtin J, Patel S, Eshaghi A, Lombos E, Higgins R, Alexander D, Olsha R, Doyle J, Tran D, Sarabia A, Lee C, Bastien N, Li Y, Low D, Boivin G, Gubbay J (2011) J Clin Virol 50:257–261

    Article  CAS  Google Scholar 

  8. Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ (2008) Nature 453:128–1261

    Article  Google Scholar 

  9. Woods CJ, Malaisree M, Pattarapongdilok N, Sompornpisut P, Hannongbua S, Mulholland A (2012) J Biochem 51:4364–4375

    Article  CAS  Google Scholar 

  10. Basha SH, Prasad RN (2012) BMC Res Notes 5:105

    Article  CAS  Google Scholar 

  11. Sheu TG, Fry AM, Garten RJ, Deyde VM, Shwe T, Bullion L, Peebles PJ, Li Y, Klimov AI, Gubareva LV (2011) J Infect Dis 203:13–71

  12. Esposito S, Molteni CG, Daleno C, Valzano A, Fossali E, Da Dalt L, Cecinati V, Bruzzese E, Giacchino R, Giaquinto C, Galeone C, Lackenby A, Principi N (2010) Virol J 7:202

    Article  Google Scholar 

  13. Govorkova EA, Ilyushina NA, Marathe BM, McClaren JL, Webster RG (2010) J Virol 84:8042–8050

    Article  CAS  Google Scholar 

  14. Zepeda HM, Perea-Araujo L, Zarate-Segura PB, Vázquez-Pérez JA, Miliar-García A, Garibay-Orijel C, Domínguez-López A, Badillo-Corona JA, López-Orduña E, García-González OP, Villaseñor-Ruíz I, Ahued-Ortega A, Aguilar-Faisal L, Bravo J, Lara-Padilla E, García-Cavazos RJ (2010) J Clin Virol 48:36–39

    Article  Google Scholar 

  15. Tolentino-Lopez L, Segura-Cabrera A, Reyes-Loyola P, Zimic M, Quiliano M, Briz V, Muñoz-Fernández A, Rodríguez-Pérez M, Ilizaliturri-Flores I, Correa-Basurto J (2013) Biopolymers 99(1):10–21. doi:10.1002/bip.22130

    Article  CAS  Google Scholar 

  16. Loyola PKR, Campos-Rodríguez R, Bello M, Rojas-Hernández S, Zimic M, Quiliano M, Briz V, Ángeles Muñoz-Fernández M, Tolentino-López L, Correa-Basurto J (2013) Immunol Res 56:44–60. doi:10.1007/s12026-013-8385-z

  17. Bearman GM, Shankaran S, Elam K (2010) Drug Discov 5:152–156

    Google Scholar 

  18. Memoli MJ, Hrabal RJ, Hassantoufighi A, Eichelberger MC, Taubenberger JK (2010) Clin Infect Dis 50:1252–1255

    Article  CAS  Google Scholar 

  19. Pizzorno A, Bouhy X, Abed Y, Boivin G (2012) Anal Chem 84(8):3725–3730. doi:10.1021/ac300291c

    Article  Google Scholar 

  20. Shie JJ, Fang JM, Lai PT, Wen WH, Wang SY, Cheng YS, Tsai KC, Yang AS, Wong CH (2011) J Am Chem Soc 133(44):17959–17965

    Article  CAS  Google Scholar 

  21. Gasymov OK, Abduragimov AR, Glasgow BJ (2012) Biochemistry 51(14):2991–3002. doi:10.1021/bi3002902

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Peterson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.9. Gaussian, Inc., Pittsburgh

  23. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart E, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  25. Rayamajhi N, Joo JC, Cha SB, Pokherl S, Shin MK, Yoo YJ, Yoo HS (2011) Microbiology 11:29

    CAS  Google Scholar 

  26. Kanibolotsky DS, Novosyl’na OV, Abbott CM, Negrutskii BS, El'skaya AV (2008) BMC Struct Biol 8:4

    Article  Google Scholar 

  27. Meijer A, Jonges M, Abbink F, Ang W, van Beek J, Beersma M, Bloembergen P, Boucher C, Claas E, Donker G, van Gageldonk-Lafeber R, Isken L, de Jong A, Kroes A, Leenders S, van der Lubben M, Mascini E, Niesters B, Oosterheert JJ, Osterhaus A, Riesmeijer R, Riezebos-Brilman A, Schutten M, Sebens F, Stelma F, Swaan C, Timen A, Van’t Veen A, van der Vries E, Te Wierik M, Koopmans M (2011) Antivir Res 92(1):81–89

    Article  CAS  Google Scholar 

  28. ]Aoki FY, Boivin G, Roberts N (2007) Antivir Ther 12(4 Pt B):603–616

    CAS  Google Scholar 

  29. Storms AD, Gubareva LV, Su S, Wheeling JT, Okomo-Adhiambo M, Pan CY, Reisdorf E, St George K, Myers R, Wotton JT, Robinson S, Leader B, Thompson M, Shannon M, Klimov A, Fry AM (2012) Emerg Infect Dis 18(2):308–311. doi:10.3201/eid1802.111466

    Article  Google Scholar 

  30. Kramarz P, Monnet D, Nicoll A, Yilmaz C, Ciancio B (2009) Euro Surveill 14(5):19112

    Google Scholar 

  31. Jardón-Valadez E, Ulloa-Aguirre A, Piñeiro A (2008) J Phys Chem B 112:10704–10713

    Article  Google Scholar 

  32. Pan P, Li L, Li Y, Li D, Hou T (2013) Antivir Res 100:356–364

    Article  CAS  Google Scholar 

  33. Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ (2006) Nature 443:45–49

    Article  CAS  Google Scholar 

  34. Sine SM, Wang HL, Bren N (2002) J Biol Chem 277:29210–29223

    Article  CAS  Google Scholar 

  35. Karthick V, Shanthi V, Rajasekaran R, Ramanathan K (2013) Protoplasma 250(1):197–207. doi:10.1007/s00709-012-0394-6

    Article  CAS  Google Scholar 

  36. Peng DY, Sun Q, Zhu XL, Lin HY, Chen Q, Yu NX, Yang WC, Yang GF (2012) Bioorg Med Chem 20(22):6739–6750

    Article  CAS  Google Scholar 

  37. Unsal-Tan O, Ozadali K, Piskin K, Balkan A (2012) Eur J Med Chem 57C:59–64

    Article  Google Scholar 

  38. Yewale SB, Ganorkar SB, Baheti KG, Shelke RU (2012) Bioorg Med Chem Lett 22(21):6616–6620

    Article  CAS  Google Scholar 

  39. Wang M, Qi J, Liu Y, Vavricka CJ, Wu Y, Li Q, Gao GF (2011) J Virol 85(16):8431–8435. doi:10.1128/JVI. 00638-11

    Article  CAS  Google Scholar 

  40. Rudrawar S, Kerry PS, Rameix-Welti MA, Maggioni A, Dyason JC, Rose FJ, van der Werf S, Thomson RJ, Naffakh N, Russell RJ, von Itzstein M (2012) Org Biomol Chem 10(43):8628–8639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from ICyTDF (Instituto de Ciencia y Tecnología del Distrito Federal), CONACYT (Consejo Nacional de Ciencia y Tecnología), CYTED (Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo) and BEIFI (BECA DE ESTÍMULO INSTITUCIONAL DE FORMACIÓN DE INVESTIGADORES), SIP (secretaria de investigación y posgrado), COFAA (COMISIÓN DE OPERACIÓN Y FOMENTO DE ACTIVIDADES ACADEMICAS) from IPN (Instituto Politécnico Nacional, México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Correa-Basurto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gema, L.RS., Tolentino-Lopez, L.E., Martínez-Ramos, F. et al. Targeting a cluster of arginine residues of neuraminidase to avoid oseltamivir resistance in influenza A (H1N1): a theoretical study. J Mol Model 21, 8 (2015). https://doi.org/10.1007/s00894-014-2525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2525-9

Keywords

Navigation