Journal of Molecular Modeling

, 20:2485

Conformation and dynamics of 8-Arg-vasopressin in solution

  • Elke Haensele
  • Lee Banting
  • David C. Whitley
  • Timothy Clark
Original Paper

Abstract

Arginine-vasopressin was subjected to a long (11 μs) molecular dynamics simulation in aqueous solution. Analysis of the results by DASH and principal components analyses revealed four main ring conformations that move essentially independently of the faster-moving tail region. Two of these conformations (labeled “saddle”) feature well-defined β-turns in the ring and conserved transannular hydrogen bonds, whereas the other two (“open”) feature neither. The conformations have been identified and defined and are all of sufficient stability to be considered candidates for biological conformations in their cognate receptors.

Graphical Abstract

An illustration of the ring alignment of the backbone cartoons of the four main ring states of 8-Arg-vasopressin (T10_8,1,4,6) including the tail

Keywords

Vasopressin Molecular dynamics DASH analysis Peptides Principal component analysis 

Supplementary material

894_2014_2485_MOESM1_ESM.pdf (974 kb)
ESM 1(PDF 974 kb)
894_2014_2485_MOESM2_ESM.zip (16.9 mb)
ESM 2(ZIP 16.8 mb)
894_2014_2485_MOESM3_ESM.zip (977 kb)
ESM 3(ZIP 976 kb)
894_2014_2485_MOESM4_ESM.zip (2.8 mb)
ESM 4(ZIP 2.78 mb)
894_2014_2485_MOESM5_ESM.zip (488 kb)
ESM 5(ZIP 488 kb)
894_2014_2485_MOESM6_ESM.zip (1.5 mb)
ESM 6(ZIP 1.53 mb)

References

  1. 1.
    du Vigneaud V, Gish DT, Katsoyannis PG (1954) A Synthetic Preparation Possessing Biological Properties Associated with Arginine Vasopressin. J Am Chem Soc 76:4751–4752CrossRefGoogle Scholar
  2. 2.
    Laycock JF (2010) Perspectives on vasopressin. Imperial College Press, LondonGoogle Scholar
  3. 3.
    Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629–683Google Scholar
  4. 4.
    Strand FL (1999) Neuropeptides: regulators of physiological processes. MIT Press, Cambridge, pp 229–265Google Scholar
  5. 5.
    Barberis C, Morin D, Durroux T, Mouillac B, Guillon G, Seyer R, Hibert M, Tribollet E, Manning M (1999) Molecular pharmacology of AVP and OT receptors and therapeutic potential. Drug News Perspect 12:279–292CrossRefGoogle Scholar
  6. 6.
    Wu CK, Hu B, Rose JP, Liu ZJ, Nguyen TL, Zheng C, Breslow E, Wang BC (2001) Structures of an unliganded neurophysin and its vasopressin complex: implications for binding and allosteric mechanisms. Protein Sci: Publ Protein Soc 10:1869–1880CrossRefGoogle Scholar
  7. 7.
    Fujiwara Y, Tanoue A, Tsujimoto G, Koshimizu TA (2012) The roles of V1a vasopressin receptors in blood pressure homeostasis: a review of studies on V1a receptor knockout mice. Clin Exp Nephrol 16:30–34CrossRefGoogle Scholar
  8. 8.
    Pittman QJ, Bagdan B (1992) Vasopressin involvement in central control of blood pressure. Prog Brain Res 91:69–74CrossRefGoogle Scholar
  9. 9.
    Pittman QJ, Wilkinson MF (1992) Central arginine vasopressin and endogenous antipyresis. Can J Physiol Pharmacol 70:786–790CrossRefGoogle Scholar
  10. 10.
    Mogil JS, Sorge RE, LaCroix-Fralish ML et al (2011) Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction. Nat Neurosci 14:1569–1573CrossRefGoogle Scholar
  11. 11.
    Manning M, Misicka A, Olma A et al (2012) Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 24:609–628CrossRefGoogle Scholar
  12. 12.
    Jard S (1998) Vasopressin receptors. A historical survey. Adv Exp Med Biol 449:1–13CrossRefGoogle Scholar
  13. 13.
    Dunning BE, Moltz JH, Fawcett CP (1984) Modulation of insulin and glucagon secretion from the perfused rat pancreas by the neurohypophysial hormones and by desamino-D-arginine vasopressin (DDAVP). Peptides 5:871–875CrossRefGoogle Scholar
  14. 14.
    Young LJ, Flanagan-Cato LM (2012) Editorial comment: oxytocin, vasopressin and social behavior. Horm Behav 61:227–229CrossRefGoogle Scholar
  15. 15.
    Insel TR, O'Brien DJ, Leckman JF (1999) Oxytocin, vasopressin, and autism: is there a connection? Biol Psychiatry 45:145–157CrossRefGoogle Scholar
  16. 16.
    Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K et al (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342:85–90CrossRefGoogle Scholar
  17. 17.
    Manning M, Chan WY, Sawyer WH (1993) Design of cyclic and linear peptide antagonists of vasopressin and oxytocin: current status and future directions. Regul Pept 45:279–283CrossRefGoogle Scholar
  18. 18.
    Verbalis JG (2003) Disorders of body water homeostasis. Best Practice Res Clin Endocrinol Metab 17:471–503CrossRefGoogle Scholar
  19. 19.
    Lehrich RW, Greenberg A (2012) Hyponatremia and the use of vasopressin receptor antagonists in critically ill patients. J Intensive Care Med 27:207–218CrossRefGoogle Scholar
  20. 20.
    Verbalis JG (2006) AVP receptor antagonists as aquaretics: review and assessment of clinical data. Cleve Clin J Med 73(Suppl 3):S24–S33CrossRefGoogle Scholar
  21. 21.
    Barlow M (2002) Vasopressin. Emerg Med (Freemantle) 14:304–314CrossRefGoogle Scholar
  22. 22.
    Syed Ibrahim B, Pattabhi V (2005) Trypsin inhibition by a peptide hormone: crystal structure of trypsin-vasopressin complex. J Mol Biol 348:1191–1198CrossRefGoogle Scholar
  23. 23.
    Rose JP, Wu CK, Hsiao CD, Breslow E, Wang BC (1996) Crystal structure of the neurophysin-oxytocin complex. Nat Struct Biol 3:163–169CrossRefGoogle Scholar
  24. 24.
    Schmidt JM, Ohlenschlager O, Ruterjans H et al (1991) Conformation of [8-arginine]vasopressin and V1 antagonists in dimethyl sulfoxide solution derived from two-dimensional NMR spectroscopy and molecular dynamics simulation. Eur J Biochem 201:355–371CrossRefGoogle Scholar
  25. 25.
    Sikorska E, Rodziewicz-Motowidlo S (2008) Conformational studies of vasopressin and mesotocin using NMR spectroscopy and molecular modelling methods. Part I: Studies in water. J Pept Sci 14:76–84CrossRefGoogle Scholar
  26. 26.
    Rodziewicz-Motowidlo S, Sikorska E, Oleszczuk M, Czaplewski C (2008) Conformational studies of vasopressin and mesotocin using NMR spectroscopy and molecular modelling methods. Part II: Studies in the SDS micelle. J Pept Sci 14:85–96CrossRefGoogle Scholar
  27. 27.
    Liwo A, Tempczyk A, Oldziej S et al (1996) Exploration of the conformational space of oxytocin and arginine-vasopressin using the electrostatically driven Monte Carlo and molecular dynamics methods. Biopolymers 38:157–175CrossRefGoogle Scholar
  28. 28.
    Czaplewski C, Kazmierkiewicz R, Ciarkowski J (1998) Molecular modeling of the human vasopressin V2 receptor/agonist complex. J Comput Aided Mol Des 12:275–287CrossRefGoogle Scholar
  29. 29.
    Mouillac B, Chini B, Balestre MN et al (1995) The binding site of neuropeptide vasopressin V1a receptor. Evidence for a major localization within transmembrane regions. J Biol Chem 270:25771–25777CrossRefGoogle Scholar
  30. 30.
    Barberis C, Mouillac B, Durroux T (1998) Structural bases of vasopressin/oxytocin receptor function. J Endocrinol 156(2):223–229CrossRefGoogle Scholar
  31. 31.
    Schwyzer R (1995) In search of the ‘bio-active conformation’—is it induced by the target cell membrane? J Mol Recognit 8:3–8CrossRefGoogle Scholar
  32. 32.
    Mierke DF, Giragossian C (2001) Peptide hormone binding to G-protein-coupled receptors: structural characterization via NMR techniques. Med Res Rev 21:450–471CrossRefGoogle Scholar
  33. 33.
    Changeux JP, Edelstein SJ (2005) Allosteric mechanisms of signal transduction. Science 308:1424–1428CrossRefGoogle Scholar
  34. 34.
    Cui Q, Karplus M (2008) Allostery and cooperativity revisited. Protein Sci: Publ Protein Soc 17:1295–1307CrossRefGoogle Scholar
  35. 35.
    Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57:433–443CrossRefGoogle Scholar
  36. 36.
    Shao J, Tanner SW, Thompson N, Cheatham TE (2007) Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. J Chem Theory Comput 3:2312–2334CrossRefGoogle Scholar
  37. 37.
    Case DA, Darden TA, Cheatham II TE, et al (2008) AMBER 10. University of California, San FranciscoGoogle Scholar
  38. 38.
    Case DA, Darden TA, Cheatham II TE, et al (2008) AmberTools 1.0. University of California, San FranciscoGoogle Scholar
  39. 39.
    Salt DW, Hudson BD, Banting L et al (2005) DASH: a novel analysis method for molecular dynamics simulation data. Analysis of ligands of PPAR-gamma. J Med Chem 48:3214–3220CrossRefGoogle Scholar
  40. 40.
    Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  41. 41.
    Horn HW, Swope WC, Pitera JW et al (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678CrossRefGoogle Scholar
  42. 42.
    Hornak V, Abel R, Okur A et al (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinforma 65:712–725CrossRefGoogle Scholar
  43. 43.
    Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Comparison of multiple amber force fields and development of improved protein backbone parameters. J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  44. 44.
    Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J Comput Phys 23:327–341CrossRefGoogle Scholar
  45. 45.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  46. 46.
    DASH 1.0 (2008) Available from: http://www.port.ac.uk/research/cmd/software
  47. 47.
    SAR-Caddle (2013) Cepos InSilico, Kempston, UK; Available from: http://www.ceposinsilico.de/products/sar-caddle.htm
  48. 48.
    Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151CrossRefGoogle Scholar
  49. 49.
    Pazderková M, Bednárová L, Dlouhá H et al (2012) Electronic and vibrational optical activity of several peptides related to neurohypophyseal hormones: disulfide group conformation. Biopolymers 97:923–932CrossRefGoogle Scholar
  50. 50.
    Venkatachalam CM (1968) Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 6:1425–1436CrossRefGoogle Scholar
  51. 51.
    Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein Chem 34:167–339CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elke Haensele
    • 1
  • Lee Banting
    • 1
  • David C. Whitley
    • 1
  • Timothy Clark
    • 1
    • 2
  1. 1.Centre for Molecular Design, School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK
  2. 2.Computer-Chemie-Centrum and Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations