Skip to main content

Advertisement

Log in

Theoretical investigation of hydrogen bonding interaction in H3O+(H2O)9 complex

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hydrogen bonding interaction of hydronium ion with water molecules in its first and second solvation shell is studied using density functional theory with B3LYP functional and aug-cc-pvtz basis set. The nature of interaction and contribution from various interaction energies to the binding energy of a complex is studied using many-body analysis approach. The hydrogen bonds between hydronium and water molecules in its first solvation shell are stronger than those between water molecules in its second solvation shell. Many-body analysis shows that not only two-body but higher many-body energies up to seven-body interactions are also not negligible whereas eight-, nine-, and ten-body interaction energies are negligible for this complex. The terms containing hydronium ion as one of the many-body components have higher contribution to the respective total many-body interaction energy than those from the terms containing only water molecules. Additive as well as non-additive interactions are attractive and contribute about 58.6 and 44.3 % respectively to the binding energy of a complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

  2. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

  3. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

  4. Headrick JM, Diken EG, Walters RS, Hammer NI, Christie RA, Cui J, Myshakin EM, Duncan MA, Johnson MA, Jordan KD (2005) Science 308:1765–1769

    Article  CAS  Google Scholar 

  5. Gadre SR, Babu K, Rendell AP (2000) J Phys Chem A 104:8976–8982

    Article  CAS  Google Scholar 

  6. Kim KS, Tarakeshwar P, Lee JY (2000) Chem Rev 100:4145–4185

    Article  CAS  Google Scholar 

  7. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200

    Article  CAS  Google Scholar 

  8. Muller-Dethlefs K, Hobza P (2000) Chem Rev 100:143–167

    Article  Google Scholar 

  9. Lee HM, Suh SB, Lee JY, Tarakeshwar P, Kim KS (2000) J Chem Phys 112:9759–9772

    Article  CAS  Google Scholar 

  10. Jena NR, Mishra PC (2005) Theor Chem Acc 114:189–199

    Article  CAS  Google Scholar 

  11. Ludwig R (2001) Angew Chem Int Ed 40:1808–1827

    Article  CAS  Google Scholar 

  12. Dixit S, Poon W, Crain J (2000) J Phys Condens Matter 12:323–328

    Article  Google Scholar 

  13. Nguyen MT, Matus MH, Jackson VE, Ngan VT, Rustad JR, Dixon DA (2008) J Phys Chem A 112:10386–10398

    Article  CAS  Google Scholar 

  14. Buck U, Huisken F (2000) Chem Rev 100:3863–3890

    Article  CAS  Google Scholar 

  15. Brutschy B (2000) Chem Rev 100:3891–3920

    Article  CAS  Google Scholar 

  16. Singh NJ, Park M, Min SK, Suh SB, Kim KS (2006) Angew Chem Int Ed 45:3795–3800

    Article  CAS  Google Scholar 

  17. O’Brien JT, Prell JS, Bush MF, Williams ER (2010) J Am Chem Soc 132:8248–8249

    Article  Google Scholar 

  18. Jiang JC, Wang YS, Chang HC, Lin SH, Lee YT, Niedner-Schatteburg G (2000) J Am Chem Soc 122:1398–1410

    Article  CAS  Google Scholar 

  19. Lenz A, Ojamae L (2006) J Phys Chem A 110:13388–13393

    Article  CAS  Google Scholar 

  20. Bandow B, Hartke B (2006) J Phys Chem A 110:5809–5822

    Article  CAS  Google Scholar 

  21. Chang HC, Wu CC, Kuo JL (2005) Int Rev Phys Chem 24:553–578

    Article  CAS  Google Scholar 

  22. Wu C-C, Lin C-K, Chang H-C, Jiang J-C, Kuo J-L, Klein ML (2005) J Chem Phys 122:074315–074325

    Article  Google Scholar 

  23. Bush MF, Saykally RJ, Williams ER (2008) J Am Chem Soc 130:15482–15489

    Article  CAS  Google Scholar 

  24. Lisy JM (2006) J Chem Phys 125:132302–132321

    Article  Google Scholar 

  25. Jiang JC, Chang JC, Wang BC, Lin SH, Lee YT, Chang HC (1998) Chem Phys Lett 289:373–382

    Article  CAS  Google Scholar 

  26. Buch V, Bauerecker S, Devlin JP, Buck U, Kazimirski JK (2004) Int Rev Phys Chem 23:375–433

    Article  CAS  Google Scholar 

  27. Kazimirski JK, Buch V (2003) J Phys Chem A 107:9762–9775

    Article  CAS  Google Scholar 

  28. Steinbach C, Andersson P, Kazimirski JK, Buck U, Buch V, Beu TA (2004) J Phys Chem A 108:6165–6174

    Article  CAS  Google Scholar 

  29. Miyazaki M, Fujii A, Ebata T, Mikami N (2004) Science 304:1134–1137

    Article  CAS  Google Scholar 

  30. Shin JW, Hammer NI, Diken EG, Johnson MA, Walters RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004) Science 304:1137–1140

    Article  CAS  Google Scholar 

  31. Kuo J-L, Klein ML (2005) J Chem Phys 122:024516

    Article  Google Scholar 

  32. Singh NJ, Park M, Min SK, Suh SB, Kim KS (2006) Angew Chem 118:3879–3884

    Article  Google Scholar 

  33. Mizuse K, Fujii A, Mikami N (2007) J Chem Phys 126:231101–231104

    Article  Google Scholar 

  34. Douberly GE, Ricks AM, Duncan MA (2009) J Phys Chem A 113:8449–8453

    Article  CAS  Google Scholar 

  35. Gruenloh CJ, Carney JR, Arrington CA, Zwier TS, Fredericks SY, Jordan KD (1997) Science 276:1678–1681

    Article  CAS  Google Scholar 

  36. Mizuse K, Hamashima T, Fujii A (2009) J Phys Chem A 113:12134–12141

    Article  CAS  Google Scholar 

  37. Magnera TF, David DE, Michl J (1991) Chem Phys Lett 182:363–370

    Article  CAS  Google Scholar 

  38. Yang X, Zhang X, Castleman AW Jr (1991) Int J Mass Spectrom Ion Process 109:339–354

    Article  CAS  Google Scholar 

  39. Wei S, Shi Z, Castleman AW Jr (1991) J Chem Phys 94:3268–3270

    Article  CAS  Google Scholar 

  40. Xiao X-D, Vogel V, Shen YR (1989) Chem Phys Lett 163:555–559

    Article  CAS  Google Scholar 

  41. Radüge C, Pflumio V, Shen YR (1997) Chem Phys Lett 274:140–144

    Article  Google Scholar 

  42. Okumura M, Yeh LI, Myers JD, Lee YT (1990) J Phys Chem 94:3416–3427

    Article  CAS  Google Scholar 

  43. Meot-Ner Mautner M, Scheiner S, Yu WO (1998) J Am Chem Soc 120:6980–6990

    Article  Google Scholar 

  44. Lee S-W, Cox H, Goddard WA, Beauchamp JL (2000) J Am Chem Soc 122:9201–9205

    Article  CAS  Google Scholar 

  45. Achatz U, Fox BS, Beyer MK, Bondybey VE (2001) J Am Chem Soc 123:6151–6156

    Article  CAS  Google Scholar 

  46. Wei D, Salahub DR (1997) J Chem Phys 106:6086–6094

    Article  CAS  Google Scholar 

  47. Kryachko ES (1999) Chem Phys Lett 314:353

    Article  CAS  Google Scholar 

  48. Sadhukhan S, Munoz D, Adamo C, Scuseria GE (1999) Chem Phys Lett 306:83–87

    Article  CAS  Google Scholar 

  49. Pomes R, Roux B (1996) J Phys Chem 100:2519–2527

    Article  CAS  Google Scholar 

  50. Decornez H, Drukker K, Hammes-Schiffer S (1999) J Phys Chem A 103:2891–2898

    Article  CAS  Google Scholar 

  51. Brewer ML, Schmitt UW, Voth GA (2001) Biophys J 80:1691–1702

    Article  CAS  Google Scholar 

  52. Tsai CJ, Jordan KD (1993) Chem Phys Lett 213:181–188

    Article  CAS  Google Scholar 

  53. Xantheas SS (1994) J Chem Phys 100:7523–7534

    Article  CAS  Google Scholar 

  54. Xantheas SS (1995) J Chem Phys 102:4505–4517

    Article  CAS  Google Scholar 

  55. Xie Y, Remington RB, Schaefer HF III (1994) J Chem Phys 101:4878–4884

    Article  CAS  Google Scholar 

  56. Ojamae L, Shavitt I, Singer SJ (1995) Int J Quantum Chem, Quantum Chem Symp 29:657

    Article  CAS  Google Scholar 

  57. Lynden-Bell RM, Rasaiah JC (1996) J Chem Phys 105:9266–9280

    Article  CAS  Google Scholar 

  58. Lobaugh J, Voth GA (1996) J Chem Phys 104:2056–2069

    Article  CAS  Google Scholar 

  59. Pomes R, Roux B (1996) Biophys J 71:19–39

    Article  CAS  Google Scholar 

  60. Ojamae L, Shavitt I, Singer SJ (1998) J Chem Phys 109:5547–5564

    Article  CAS  Google Scholar 

  61. Singer SJ, McDonald S, Ojamae L (2000) J Chem Phys 112:710

    Article  CAS  Google Scholar 

  62. Chaudahri A, Lee S-L (2010) J Theor Comput Chem 9:177–187

    Article  Google Scholar 

  63. Ajay C, Gul Afroz M, Shyi-Long L (2010) J Mol Mod 16:1559–1566

    Article  Google Scholar 

  64. Meraj G, Naganathappa M, Chaudhari A (2012) Int J Quantum Chem 112:1439–1448

    Article  CAS  Google Scholar 

  65. Meraj G, Chaudhari A (2014) J Mol Liq 190:1–5

    Article  CAS  Google Scholar 

  66. Cristian CV, Ojamae L, Shavitt I, Singer SJ (2000) J Chem Phys 113:5321–5330

    Article  Google Scholar 

  67. Cheng H-P (1998) J Phys Chem A 102:6201–6204

    Article  CAS  Google Scholar 

  68. Sadeghi RR, Cheng H-P (1999) J Chem Phys 111:2086–2094

    Article  CAS  Google Scholar 

  69. Cheng H-P, Krause JL (1997) J Chem Phys 107:8461–8467

    Article  CAS  Google Scholar 

  70. Tuckerman ME, Laasonen K, Sprik M, Parrinello M (1995) J Phys Chem 99:5749–5752

    Article  CAS  Google Scholar 

  71. Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) Nat Lond 397:601–604

    Article  CAS  Google Scholar 

  72. Banerjee A, Shepard R, Simons J (1980) J Chem Phys 73:1814–1826

    Article  CAS  Google Scholar 

  73. Banerjee A, Quigley A, Frey RF, Johnson D, Simons J, Acoust J (1987) Soc Am 109:1038–1043

    Article  CAS  Google Scholar 

  74. Kornyshev AA, Kuznetsov AM, Spohr E, Ulstrup J (2003) J Phys Chem B 107:3351–3366

    Article  CAS  Google Scholar 

  75. Duff KD, Ashley RH (1992) Virology 190:485–489

    Article  CAS  Google Scholar 

  76. Xantheas SS (2000) Chem Phys 258:225–231

    Article  CAS  Google Scholar 

  77. Hermansson K (1988) J Chem Phys 89:2149–2159

    Article  CAS  Google Scholar 

  78. Milet A, Moszynski R, Wormer Paul ES, van der Avoird A (1999) J Phys Chem A 103:6811–6819

    Article  CAS  Google Scholar 

  79. Xantheas SS, Dunning TH Jr (1993) J Chem Phys 99:8774–8792

    Article  CAS  Google Scholar 

  80. Kulkarni A, Ganesh V, Gadre SR (2004) J Chem Phys 121:5043–5050

    Article  CAS  Google Scholar 

  81. Woo DW (2001) Bull Kor Chem Soc 22:693–698

    Google Scholar 

  82. Hankins D, Moskowitz JW, Stillinger FH (1970) J Chem Phys 53:4544–4554

    Article  CAS  Google Scholar 

  83. Mhin BJ, Kim J, Lee S, Lee JY, Kim KS (1994) J Chem Phys 100:4484–4486

    Article  CAS  Google Scholar 

  84. Kim J, Lee S, Cho SJ, Mhin BJ, Kim KS (1995) J Chem Phys 102:839–849

    Article  CAS  Google Scholar 

  85. Chaudhari A, Sahu PK, Lee SL (2004) J Chem Phys 120:170–174

    Article  CAS  Google Scholar 

  86. Chaudhari A, Lee SL (2004) J Chem Phys 120:7464–7469

    Article  CAS  Google Scholar 

  87. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fakuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Strfanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc, Wallingford, CT

Download references

Acknowledgments

The financial support from University Grants Commission (UGC), New Delhi (India) through Maulana Azad National Fellowship for Minority student (F40-143 (B/M) 2009 (SA-III/MANF) is thankfully Acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Chaudhari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraj, G.A., Chaudhari, A. Theoretical investigation of hydrogen bonding interaction in H3O+(H2O)9 complex. J Mol Model 20, 2480 (2014). https://doi.org/10.1007/s00894-014-2480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2480-5

Keywords

Navigation