Skip to main content
Log in

Mechanistic aspects of superacid mediated condensation of polyphenols with ketones. Implications for polymer synthesis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A detailed computational study of possible reaction paths for methanesulfonic and triflic acid mediated polyhydroxyalkylation reaction between resorcinol and trifluoracetone accompanied by cyclodehydration to give 9H-xanthene containing polymers has been carried out at M06-2X/6-311+G** level of theory. A cluster solvation model was used for the calculations. The calculations revealed that the most kinetically favorable reaction path involves the cyclodehydration occurring during the polymer forming step. In this case 9H-xanthene formation is promoted by the activated phenyl ring in Wheland intermediate assisting the aromatic nucleophilic substitution of OH group which leads to the cyclization. It has been demonstrated that the inability of methanesulfonic acid to catalyze the formation of 9H-xanthene containing polymers is due to the very high barrier of the rate limiting step of the polymer forming reaction and not the cyclodehydration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hofmann JE, Schriesheim A (1964) Alkylation of aromatics with aldehydes and ketones. In: Olah GA (ed) Friedel–Crafts and related reactions, vol II. Wiley, New York, pp 597–640

    Google Scholar 

  2. March J (1992) Advanced organic chemistry. Wiley, New York, pp 675–758

    Google Scholar 

  3. Kray WD, Rosser RW (1977) Synthesis of multifunctional triarylfluoroethanes. 1. Condensation of fluoro ketones. J Org Chem 42:1186–1189

    Article  CAS  Google Scholar 

  4. Olah GA, Klumpp DA (2008) Superelectrophiles and their chemistry. Wiley, New York

    Google Scholar 

  5. Klumpp DA (2009) Superelectrophiles in heterocyclic ring-forming reactions. ARKIVOC Part I:63–80.

  6. Olah GA, Klumpp DA (2004) Superelectrophilic solvation. Acc Chem Res 37:211–220

    Article  CAS  Google Scholar 

  7. Zielinski ME, Tracy AF, Klumpp DA (2012) Utilization of the hydroxyalkylation reaction to prepare bis(benzocrown ethers). Tetrahedron Lett 53:1701–1704

    Article  CAS  Google Scholar 

  8. Hernandez M, Carmen G, Zolotukhin MG, Fomine S, Cedillo G, Morales SL (2010) Novel, metal-free, superacid-catalyzed "click" reactions of isatins with linear, nonactivated, multiring aromatic hydrocarbons. Macromolecules 43:6968–6979

    Article  CAS  Google Scholar 

  9. O’Connor MJ, Boblak KN, Spitzer AD, Gucciardo PA, Baumann AM, Peter JW, Chen CY, Peter R, Mitton AA, Klumpp DA (2010) Condensations of aryl trifluoromethyl ketones with arenes in acidic media. Tetrahedron Lett 51:4984–4987

    Article  Google Scholar 

  10. O’Connor MJ, Boblak KN, Topinka MJ, Kindelin PJ, Briski JM, Zheng C, Klumpp DA (2010) Superelectrophiles and the effects of trifluoromethyl substituents. J Am Chem Soc 132:3266–3267

    Article  Google Scholar 

  11. Tao L, Yang H, Liu J, Fan L, Yang S (2013) Synthesis and characterization of fluorinated bisphenols and tetraphenols via a simple One-Pot reaction. Synth Commun 43:2319–2325

    Article  CAS  Google Scholar 

  12. Cruz OH, Olvera Garza LI, Zolotukhin MG, Fomine S, Cardenas J (2014) New polymer-forming reaction. Chem Comm (submitted)

  13. Khosropour AR, Khodaei MM, Moghannian H (2005) A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14-H-dibenzo [a, j]xanthenes catalyzed by pTSA in solution and solvent-free conditions. Synlett 10:955–958

    Article  Google Scholar 

  14. Saini A, Kumar S, Sandhu JS (2006) A new LiBr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a, j]xanthenes and tetrahydrobenzo[b]pyrans under solvent-free conventional and microwave heating. Synlett 12:1928–1932

    Google Scholar 

  15. Ko S, Yao CF (2006) Heterogeneous catalyst: Amberlyst-15 catalyzes the synthesis of 14-substituted-14H-dibenzo[a, j]xanthenes under solvent-free conditions. Tetrahedron Lett 47:8827–8829

    Article  CAS  Google Scholar 

  16. Seyyedhamzeh M, Mirzaei P, Bazgir A (2008) Solvent-free synthesis of aryl-14H-dibenzo[a, j]xanthenes and 1,8-dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst. Dyes Pigments 76:836–839

    Article  CAS  Google Scholar 

  17. Shaterian HR, Ghashang M, Hassankhani A (2008) One-pot synthesis of aryl-14H-dibenzo[a, j]xanthene leuco-dye derivatives. Dyes Pigments 76:564–568

    Article  CAS  Google Scholar 

  18. Pasha MA, Jayashankara VP (2007) Molecular iodine catalyzed synthesis of aryl-14H-dibenzo[a, j]xanthenes under solvent-free condition. Bioorg Med Chem Lett 17:621–623

    Article  CAS  Google Scholar 

  19. Das B, Ravikanth B, Ramu R, Laxminarayana K, Rao VB (2006) Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo[a, j]xanthenes. J. Mol Catal A Chem 255:74–77

    Article  CAS  Google Scholar 

  20. Rajitha B, Kumar BS, Reddy YT, Reddy PN, Sreenivasulu N (2005) Sulfamic acid: a novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a, j]xanthenes under conventional heating and microwave irradiation. Tetrahedron Lett 46:8691–8693

    Article  CAS  Google Scholar 

  21. Bigdeli MA, Heravi MM, Mahdavinia GH (2007) Silica supported perchloric acid (HClO4SiO2): a mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14-H-dibenzo[a, j]xanthenes. J Mol Catal A: Chem 275:25–29

    Article  CAS  Google Scholar 

  22. Kantevari S, Chary MV, Das APR, Vuppalapati SVN, Lingaiah N (2008) Catalysis by an ionic liquid: highly efficient solvent-free synthesis of aryl-14H-dibenzo[a.j]xanthenes by molten tetrabutylammonium bromide under conventional and microwave heating. Catal Commun 9:1575–1578

    Article  CAS  Google Scholar 

  23. Pratibha KY, Athindranath V, Chauhan SMS (2008) Facile and efficient synthesis of 14‐alkyl‐ or aryl‐14‐H‐dibenzo[a, j]xanthenes using sulfonyl‐functionalized ionic liquids. Synth Commun 38:637–648

    Article  Google Scholar 

  24. Hajipour AR, Ghayeb Y, Sheikhan N, Ruoho A (2010) Brønsted acidic ionic liquid as an efficient and reusable catalyst for synthesis of 14Aryl or 14Alkyl14H-dibenzo[a, j]xanthenes under solvent-free condition. Synlett 5:741–744

    Article  Google Scholar 

  25. Gong K, Fang D, Wang HL, Zhou XL, Liu ZL (2009) The one-pot synthesis of 14-alkyl- or aryl-14H-dibenzo[a, j]xanthenes catalyzed by task-specific ionic liquid. Dyes Pigments 80:30–33

    Article  CAS  Google Scholar 

  26. Su W, Yang D, Jin C, Zhang B (2008) Yb(OTf)3 catalyzed condensation reaction of β-naphthol and aldehyde in ionic liquids: a green synthesis of aryl-14H-dibenzo[a, j]xanthenes. Tetrahedron Lett 49:3391–3394

    Article  CAS  Google Scholar 

  27. Dabiri M, Baghbanzadeh M, Nikcheh MS, Arzroomchilar E (2008) Eco-friendly and efficient one-pot synthesis of alkyl- or aryl-14H-dibenzo[a, j]xanthenes in water. Bioorg Med Chem Lett 18:436–438

    Article  CAS  Google Scholar 

  28. Mirjalili BBF, Bamoniri AH, Akbari A (2008) BF3 · SiO2: an efficient alternative for the synthesis of 14-aryl or alkyl-14H-dibenzo[a, j]xanthenes. Tetrahedron Lett 49:6454–6456

    Article  CAS  Google Scholar 

  29. Amini MM, Seyyedhamzeh M, Bazigir A (2007) Heteropolyacid: an efficient and eco-friendly catalyst for the synthesis of 14-aryl-14H-dibenzo[a, j]xanthene. Appl Catal, A 323:242–245

    Article  CAS  Google Scholar 

  30. Heravi MM, Bakhtiari K, Daroogheha Z, Bamoharram F (2007) Facile heteropolyacid-promoted synthesis of 14-substituted-14-H-dibenzo[a,j] xanthene derivatives under solvent-free conditions. J Mol Catal A: Chem 273:99–101

    Article  CAS  Google Scholar 

  31. Sharifi A, Abaee S, Tavakkoli A, Mirzaei M, Zolfagharei A (2008) Facile montmorillonite K-10-supported synthesis of xanthene derivatives under microwave and thermal conditions. Synth Commun 38:2958–2966

    Article  CAS  Google Scholar 

  32. Zarei A, Hajipour AR, Khazdooz L (2010) The one-pot synthesis of 14-aryl or alkyl-14H-dibenzo [a, j] xanthenes catalyzed by P2O5/Al2O3 under microwave irradiation. Dyes Pigments 85:133–138

    Article  CAS  Google Scholar 

  33. Khazdooz L, Zarei A, Hajipour AR, Sheikhan N (2011) A study for the synthesis of dibenzo [a,j] xanthenes and 1-amidoalkyl 2-naphthols catalyzed by [Hmim][HSO4] as a green, efficient and reusable catalyst under solvent-free conditions. Iran J Catal 1:1–9

    CAS  Google Scholar 

  34. Naik MA, Sachdev D, Dubey A (2010) Sulfonic acid functionalized mesoporous SBA-15 for one-pot synthesis of substituted aryl-14H-dibenzo xanthenes and bis(indolyl) methanes. Catal Commun 11:1148–1153

    Article  CAS  Google Scholar 

  35. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  36. Pliego JR Jr, Riveros JM (2002) Theoretical calculation of pK a using the cluster — continuum model. J Phys Chem A 106:7434–7439

    Article  CAS  Google Scholar 

  37. Frisch MJ et al. (2013) Gaussian 09 Revision D.01. Gaussian Inc, Wallingford, CT

  38. Jiménez Castillo U, Zolotukhin MG, Fomina L, Romero Nieto D, Olivera Garza L, Fomine S (2013) Reactions of ketones with aromatics in acid media. The effect of trifluoromethyl groups and the acidity media. A theoretical study. J Mol Model 19:793–801

    Article  Google Scholar 

  39. Peña ER, Zolotukhin MG, Fomine S (2004) Factors enhancing the reactivity of carbonyl compounds for polycondensations with aromatic hydrocarbons. A computational study. Macromolecules 37:6227–6235

    Article  Google Scholar 

  40. López A, Zolotukhin MG, Fomina L, Fomine S (2007) Triflic acid mediated polycondensation of carbonyl compounds with aromatic hydrocarbons. A theoretical study. Macromol Theory Simul 16:227–239

    Article  Google Scholar 

  41. Ramos E, Zolotukhin M, Fomine S (2005) Reaction pathways of superelectrophilicpolycondensation of 2,2,2-trifluoroacetophenone and biphenyl. A computational study. Polymer 46:7494–7503

    Article  Google Scholar 

  42. López A, Zolotukhin MG, Fomina L, Fomine S (2007) Superelectrophlilic activation of 4-heterocyclohexanones. Implications for polymer synthesis. A theoretical study. J Phys Chem A 111:13606–13610

    Article  Google Scholar 

  43. Romero D, Fomine S, Zolotukhin MG, Fomina L, Gutiérrez M (2009) Superelectrophlilic activation of N-substituted isatins. Implications for polymer synthesis. A theoretical study. Macromol Theor Simul 18:138–144

    Article  Google Scholar 

  44. Romero D, Zolotukhin MG, Fomina L, Fomine S (2010) Superacid mediated hydroxyalkylation reaction of 1,2,3-indanetrione. J Phys Org Chem 23:878–884

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from CONACyT Mexico (Grant 151842) and from DGAPA-UNAM (PAPIIT IN 105314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei Fomine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, G., Cruz, O.H., Garza, L.I.O. et al. Mechanistic aspects of superacid mediated condensation of polyphenols with ketones. Implications for polymer synthesis. J Mol Model 20, 2474 (2014). https://doi.org/10.1007/s00894-014-2474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2474-3

Keywords

Navigation