Skip to main content
Log in

Multiscale molecular dynamics simulations of sodium dodecyl sulfate micelles: from coarse-grained to all-atom resolution

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Sodium dodecyl sulfate (SDS) is a well-known anionic detergent widely used in both experimental and theoretical investigations. Many molecular dynamics (MD) simulation have been performed on the SDS molecule at coarse-grained (CG), united-atom (UA), and all-atom (AA) resolutions. However, these simulations are usually based on general parameters determined from large sets of molecules, and as a result, peculiar molecular specificities are often poorly represented. In addition, the parameters (ideal bond lengths, angles, dihedrals and charge distribution) differ according to the resolution, highlighting a lack of coherence. We therefore propose a new set of parameters for CG, UA, and AA resolutions based on a high quantum mechanics (QM) level optimization of the detergent structure and the charge distribution. For the first time, QM-optimized parameters were directly applied to build the AA, UA, and CG model of the SDS molecule, leading to a more coherent description. As a test case, MD simulations were then performed on SDS preformed micelles as previous experimental and theoretical investigations allow direct comparison with our new sets of parameters. While all three models yield similar macromolecular properties (size, shape, and accessible surface) perfectly matching previous results, the attribution of more coherent parameters to SDS enables the description of the specific interactions inside and outside the micelle. These more consistent parameters can now be used to accurately describe new multi-scale systems involving the SDS molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shaw BF, Schneider GF, Arthanari H et al (2011) Complexes of native ubiquitin and dodecyl sulfate illustrate the nature of hydrophobic and electrostatic interactions in the binding of proteins and surfactants. J Am Chem Soc 133:17681–17695

    Article  CAS  Google Scholar 

  2. Shaw BF, Schneider GF, Whitesides GM (2012) Effect of surfactant hydrophobicity on the pathway for unfolding of ubiquitin. J Am Chem Soc 134:18739–18745

    Article  CAS  Google Scholar 

  3. Hu W, Liu J, Luo Q et al (2011) Elucidation of the binding sites of sodium dodecyl sulfate to β-lactoglobulin using hydrogen/deuterium exchange mass spectrometry combined with docking simulation. Rapid Commun Mass Spectrom 25:1429–1436

    Article  CAS  Google Scholar 

  4. Liu R, Bu W, Xi J et al (2012) Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin. Acta Crystallogr D Biol Crystallogr 68:497–504

    Article  CAS  Google Scholar 

  5. Tian J, Sethi A, Anunciado D et al. (2012) Characterization of a disordered protein during micellation: interactions of α-synuclein with sodium dodecyl sulfate. J Phys Chem B 116:4417–4424

  6. Hayashi S, Ikeda S (1980) Micelle size and shape of sodium dodecyl sulfate in concentrated NaCl solutions. J Phys Chem 84:744–751

    Article  CAS  Google Scholar 

  7. Quina FH, Preto R, Bales BL (1995) Growth of sodium dodecyl sulfate micelles with detergent concentration. J Phys Chem 99:17028–17031

    Article  CAS  Google Scholar 

  8. Hassan PA, Fritz G, Kaler EW (2003) Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt. J Colloid Interface Sci 257:154–162

    Article  CAS  Google Scholar 

  9. Chen J, Su T, Mou CY (1986) Size of sodium dodecyl sulfate micelle in concentrated salt solutlons. J Phys Chem 90:2418–2421

    Article  CAS  Google Scholar 

  10. Corti M, Degiorgio V (1981) Quasi-elastic light scattering study of intermicellar interactions in aqueous sodlum dodecyl sulfate solutions. J Phys Chem 85:711–717

    Article  CAS  Google Scholar 

  11. Sharma VK, Mitra S, Verma G et al. (2010) Internal dynamics in SDS micelles: neutron scattering study. J Phys Chem B 114:17049–17056

    Article  CAS  Google Scholar 

  12. Itri D, Amaral LQ (1991) Distance distribution function of sodium dodecyl sulfate micelles by X-ray scattering. J Phys Chem 95:423–427

    Article  CAS  Google Scholar 

  13. Hammouda B (2013) Temperature effect on the nanostructure of SDS micelles in water. J Res Natl Inst Stand Technol 118:151–167

    Article  CAS  Google Scholar 

  14. Mcmanus HJD, Kang YS, Kevan L (1992) Electron spin resonance, electron spin echo, and electron nuclear double resonance studies of the photoreduction yield of a series of alkylmethyiviologens in sodium dodecyl sulfate and dodecyltrimethylammonium chloride micelles : effect of the alkyl cha. J Phys Chem 96:5622–5628

    Article  CAS  Google Scholar 

  15. Behera K, Pandey S (2007) Modulating properties of aqueous sodium dodecyl sulfate by adding hydrophobic ionic liquid. J Colloid Interface Sci 316:803–814

    Article  CAS  Google Scholar 

  16. Jalili S, Akhavan M (2009) A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution. Colloids Surf A Physicochem Eng Asp 352:99–102

    Article  CAS  Google Scholar 

  17. Sangwai A, Sureshkumar R (2011) Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles. Langmuir 27:6628–6638

    Article  CAS  Google Scholar 

  18. Levine BG, LeBard DN, DeVane R et al. (2011) Micellization Studied by GPU-Accelerated Coarse-Grained Molecular Dynamics. J Chem Theory Comput 7:4135–4145

    Article  CAS  Google Scholar 

  19. Jalili S, Akhavan M (2011) Study of the Alzheimer’s Aβ40 peptide in SDS micelles using molecular dynamics simulations. Biophys Chem 153:179–186

    Article  CAS  Google Scholar 

  20. Bruce CD, Berkowitz ML, Perera L, Forbes MDE (2002) Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. J Phys Chem B 106:3788–3793

  21. Bruce CD, Senapati S, Berkowitz ML et al (2002) Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. J Phys Chem B 106:10902–10907

  22. Gao J, Ge W, Hu G, Li J (2005) From homogeneous dispersion to micelles-a molecular dynamics simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution. Langmuir 21:5223–5229

    Article  CAS  Google Scholar 

  23. Yan H, Cui P, Liu C, Yuan S (2012) Molecular dynamics simulation of pyrene solubilized in a sodium dodecyl sulfate micelle. Langmuir 28:4931–4938

  24. Sammalkorpi M, Karttunen M, Haataja M (2007) Structural properties of ionic detergent aggregates: a large-scale molecular dynamics study of sodium dodecyl sulfate. J Phys Chem B 111:11722–11733

    Article  CAS  Google Scholar 

  25. Yan H, Yuan S-L, Xu G-Y, Liu C-B (2010) Effect of Ca2+ and Mg2+ ions on surfactant solutions investigated by molecular dynamics simulation. Langmuir 26:10448–10459

    Article  CAS  Google Scholar 

  26. Mackerell AD (1995) Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: decreased fluidity of the micelle hydrocarbon interior. J Phys Chem 99:1846–1855

  27. Langham AA, Waring AJ, Kaznessis YN (2007) Comparison of interactions between beta-hairpin decapeptides and SDS/DPC micelles from experimental and simulation data. BMC Biochem 8:11, 1

    Article  Google Scholar 

  28. Comba P, Remenyi R (2003) Inorganic and bioinorganic molecular mechanics modeling - the problem of the force field parameterization. Coord Chem Rev 238–239:9–20

    Article  Google Scholar 

  29. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  CAS  Google Scholar 

  30. Brocos P, Mendoza-Espinosa P, Castillo R et al (2012) Multiscale molecular dynamics simulations of micelles: coarse-grain for self-assembly and atomic resolution for finer details. Soft Matter 8:9005

    Article  CAS  Google Scholar 

  31. Kraft JF, Vestergaard M, Schiøtt B, Thøgersen L (2012) Modeling the self-assembly and stability of DHPC micelles using atomic resolution and coarse grained MD simulations. J Chem Theory Comput 8:1556–1569

  32. Stansfeld PJ, Sansom MSP (2011) From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations. J Chem Theory Comput 7:1157–1166

  33. Bessonov K, Vassall KA, Harauz G (2013) Parameterization of the proline analogue Aze (azetidine-2-carboxylic acid) for molecular dynamics simulations and evaluation of its effect on homo-pentapeptide conformations. J Mol Graph Model 39:118–125

    Article  CAS  Google Scholar 

  34. Cao Z, Liu L, Zhao L et al (2013) Comparison of the structural characteristics of Cu(2+)-bound and unbound α-syn12 peptide obtained in simulations using different force fields. J Mol Model 19:1237–1250

    Article  CAS  Google Scholar 

  35. Soares T, Hünenberger PH, Kastenholz MA et al (2005) An improved nucleic acid parameter set for the GROMOS force field. J Comput Chem 26:725–737

    Article  CAS  Google Scholar 

  36. Liu X, Zhang S, Zhou G et al (2006) New force field for molecular simulation of guanidinium-based ionic liquids. J Phys Chem B 110:12062–12071

    Article  CAS  Google Scholar 

  37. Marrink SJ, Risselada HJ, Yefimov S et al (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  Google Scholar 

  38. Terakawa T, Takada S (2014) RESPAC: method to determine partial charges in coarse-grained protein model and its application to DNA-binding proteins. J Chem Theory Comput 10:711–721

  39. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

  40. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Theory Comput 4:435–447

  41. Sanders SA, Sammalkorpi M, Panagiotopoulos AZ (2012) Atomistic simulations of micellization of sodium hexyl, heptyl, octyl, and nonyl sulfates. J Phys Chem B 116:2430–2437

    Article  CAS  Google Scholar 

  42. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  43. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  44. Bogusz S, Venable RM, Pastor RW (2000) Molecular dynamics simulations of octyl glucoside micelles: structural properties. J Phys Chem B 104:5462–5470

  45. Yoshii N, Okazaki S (2007) A molecular dynamics study of structure and dynamics of surfactant molecules in SDS spherical micelle. Condens Matter Phys 10:573–578

    Article  Google Scholar 

  46. Salaniwal S, Cui ST, Cochran HD, Cummings PT (2001) Molecular simulation of a dichain surfactant/water/carbon dioxide system. 1. Structural properties of aggregates. Langmuir 17:1773–1783

  47. Stephany SM, Kole TM, Fisch MR (1994) Light scattering study of the effects of 1-pentanol on solutions of sodium dodecyl sulfate in NaCl-H20 solutions. J Phys Chem 98:11126–11128

  48. Morisada S, Shinto H (2010) Implicit solvent model simulations of surfactant self-assembly in aqueous solutions. J Phys Chem B 114:6337–6343

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Roussel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roussel, G., Michaux, C. & Perpète, E.A. Multiscale molecular dynamics simulations of sodium dodecyl sulfate micelles: from coarse-grained to all-atom resolution. J Mol Model 20, 2469 (2014). https://doi.org/10.1007/s00894-014-2469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2469-0

Keywords

Navigation