Skip to main content
Log in

Why strategies to control Leishmania spp. multiplication based on the use of proteinase inhibitors should consider multiple targets and not only a single enzyme

  • Short Comment
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The use of proteinases as targets to develop novel chemotherapies against Leishmania spp. infections is a very promising strategy. Based on a previous study by Goyal et al. [J Mol Model (2014) 20:2099], we discuss herein the idea that only a combined treatment with distinct proteinase inhibitors would be an effective antileishmanial therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO (1998) Technical Report Series. Rapport sur la Santé dans le Monde 1:59

    Google Scholar 

  2. Berman J (2005) Recent developments in leishmaniasis: epidemiology, diagnosis and treatment. Curr Infect Dis Repor 7:33–38

    Article  Google Scholar 

  3. Pereira BAS, Silva FS, Silva-Almeida M, Santos-de-Souza R, Oliveira LFG, Ribeiro-Guimarães ML, Alves CR (2014) Proteinase inhibitors: a promising drug class for treating leishmaniasis. Curr Drug Target (in press)

  4. Beynon RJ, Bond JS (2001) Proteolytical enzymes: a pratical approach, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  5. Goyal S, Grover S, Dhanjal JK, Goyal M, Tyagi C, Chacko S, Grover A (2014) Mechanistic insights into mode of actions of novel oligopeptidase B inhibitors for combating leishmaniasis. J Mol Model 20:2099

    Article  Google Scholar 

  6. Silva-Almeida M, Souza-Silva F, Pereira BA, Ribeiro-Guimarães ML, Alves CR (2014) Overview of the organization of protease genes in the genome of Leishmania spp. Parasit Vectors 7(1):387

    Article  Google Scholar 

  7. Munday JC, McLuskey K, Brown E, Coombs GH, Mottram JC (2011) Oligopeptidase B deficient mutants of Leishmania major. Mol Biochem Parasitol 175(1):49–57

    Article  CAS  Google Scholar 

  8. Swenerton RK, Zhang S, Sajid M, Medzihradszky KF, Craik CS, Kelly BL, McKerrow JH (2011) The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion. J Biol Chem 286(1):429–40

    Article  CAS  Google Scholar 

  9. Jha TK (2006) Drug unresponsiveness & combination therapy for kala-azar. Indian J Med Res 123:389–398

    CAS  Google Scholar 

  10. Hughes PJ, Cretton-Scott E, Teague A, Wensel TM (2011) Protease inhibitors for patients With HIV-1 infection: a comparative overview. P T 36(6):332–336

    Google Scholar 

  11. Semenov A, Olson JE, Rosenthal PJ (1998) Antimalarial synergy of cysteine and aspartic protease inhibitors. Antimicrob Agents Chemother 42(9):2254–2258

    CAS  Google Scholar 

  12. Das L, Datta N, Bandyopadhyay S, Das PK (2001) Successful therapy of lethal murine visceral leishmaniasis with cystatin involves up-regulation of nitric oxide and a favorable T cell response. J Immunol 166(6):4020–4028

    Article  CAS  Google Scholar 

  13. Demarchi IG, Silveira TG, Ferreira IC, Lonardoni MV (2012) Effect of HIV protease inhibitors on New World Leishmania. Parasitol Int 61(4):538–544

    Article  CAS  Google Scholar 

  14. Pereira IO, Assis DM, Juliano MA, Cunha RL, Barbieri CL, do Sacramento LV, Marques MJ, dos Santos MH (2011) Natural products from Garcinia brasiliensis as Leishmania protease inhibitors. J Med Food 14(6):557–562

    Article  CAS  Google Scholar 

  15. Schurigt U, Schad C, Glowa C, Baum U, Thomale K, Schnitzer JK, Schultheis M, Schaschke N, Schirmeister T, Moll H (2010) Aziridine-2,3-dicarboxylate-based cysteine cathepsin inhibitors induce cell death in Leishmania major associated with accumulation of debris in autophagy-related lysosome-like vacuoles. Antimicrob Agents Chemother 54(12):5028–5041

    Article  CAS  Google Scholar 

  16. Ponte-Sucre A, Vicik R, Schultheis M, Schirmeister T, Moll H (2006) Aziridine-2,3-dicarboxylates, peptidomimetic cysteine protease inhibitors with antileishmanial activity. Antimicrob Agents Chemother 50(7):2439–2447

    Article  CAS  Google Scholar 

  17. Valdivieso E, Rangel A, Moreno J, Saugar JM, Cañavate C, Alvar J, Dagger F (2010) Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp. Exp Parasitol 26(4):557–563

    Article  Google Scholar 

  18. Santos LO, Marinho FA, Altoé EF, Vitório BS, Alves CR, Britto C, Motta MC, Branquinha MH, Santos AL, d'Avila-Levy CM (2009) HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS ONE 4(3):e4918

    Article  Google Scholar 

  19. Shah PP, Myers MC, Beavers MP, Purvis JE, Jing H, Grieser HJ, Sharlow ER, Napper AD, Huryn DM, Cooperman BS, Smith AB 3rd, Diamond SL (2008) Kinetic characterization and molecular docking of a novel, potent, and selective slow-binding inhibitor of human cathepsin L. Mol Pharmacol 74(1):34–41

    Article  CAS  Google Scholar 

  20. d’Avila-Levy CM, Marinho FA, Santos LO, Martins JL, Santos AL, Branquinha MH (2006) Antileishmanial activity of MDL 28170, a potent calpain inhibitor. Int J Antimicrob Agents 28(2):138–142

    Article  Google Scholar 

  21. Williams RA, Tetley L, Mottram JC, Coombs GH (2006) Cysteine peptidases CPA and CPB are vital for autophagy and differentiation in Leishmania mexicana. Mol Microbiol 61(3):655–674

    Article  CAS  Google Scholar 

  22. Mahmoudzadeh-Niknam H, McKerrow JH (2004) Leishmania tropica: cysteine proteases are essential for growth and pathogenicity. Exp Parasitol 106(3–4):158–163

    Article  CAS  Google Scholar 

  23. Desai PV, Patny A, Sabnis Y, Tekwani B, Gut J, Rosenthal P, Srivastava A, Avery M (2004) Identification of novel parasitic cysteine protease inhibitors using virtual screening The ChemBridge database. J Med Chem 47(26):660966–660915

    Article  Google Scholar 

  24. Somanna A, Mundodi V, Gedamu L (2002) Functional analysis of cathepsin B-like cysteine proteases from Leishmania donovani complex. Evidence for the activation of latent transforming growth factor beta. J Biol Chem 277(28):25305–25312

    Article  CAS  Google Scholar 

  25. Maekawa Y, Himeno K, Ishikawa H, Hisaeda H, Sakai T, Dainichi T, Asao T, Good RA, Katunuma N (1998) Switch of CD4+ T cell differentiation from Th2 to Th1 by treatment with cathepsin B inhibitor in experimental leishmaniasis. J Immunol 161(5):2120–2127

    CAS  Google Scholar 

  26. Frame MJ, Mottram JC, Coombs GH (2000) Analysis of the roles of cysteine proteinases of Leishmania mexicana in the host-parasite interaction. Parasitology 121(4):367–377

    Article  CAS  Google Scholar 

  27. Selzer PM, Pingel S, Hsieh I, Ugele B, Chan VJ, Engel JC, Bogyo M, Russell DG, Sakanari JA, McKerrow JH (1999) Cysteine protease inhibitors as chemotherapy: lessons from a parasite target. Proc Natl Acad Sci USA 96(20):11015–11022

    Article  CAS  Google Scholar 

  28. Umezawa S, Tatsuta K, Fujimoto K, Tsuchiya T, Umezawa H (1972) Structure of antipain, a new Sakaguchi-positive product of streptomyces. J Antibiot (Tokyo) 25(4):267–270

    Article  CAS  Google Scholar 

  29. Maeda K, Kawamura K, Kondo S, Aoyagi T, Takeuchi T (1971) The structure and activity of leupeptins and related analogs. J Antibiot (Tokyo) 24(6):402–404

    Article  CAS  Google Scholar 

  30. Silva-Almeida M, Pereira BA, Ribeiro-Guimarães ML, Alves CR (2012) Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasit Vectors 5:160

    Article  CAS  Google Scholar 

  31. Pereira BA, Britto C, Alves CR (2012) Expression of infection-related genes in parasites and host during murine experimental infection with Leishmania (Leishmania) amazonensis. Microb Pathog 52(2):101–108

    Article  CAS  Google Scholar 

  32. Rebello KM, Britto C, Pereira BA, Pita-Pereira DD, Moraes MO, Ferreira AB, Cysne-Finkelstein L, Otto TD, Côrtes LM, da-Silva GG, Alves CR (2010) Leishmania (Viannia) braziliensis: influence of successive in vitro cultivation on the expression of promastigote proteinases. Exp Parasitol 126(4):570–576

    Article  CAS  Google Scholar 

  33. Rebello KM, Côrtes LM, Pereira BA, Pascarelli BM, Côrte-Real S, Finkelstein LC, Pinho RT, d'Avila-Levy CM, Alves CR (2009) Cysteine proteinases from promastigotes of Leishmania (Viannia) braziliensis. Parasitol Res 106(1):95–104

    Article  Google Scholar 

  34. Alves CR, Corte-Real S, Bourguignon SC, Chaves CS, Saraiva EM (2005) Leishmania amazonensis: early proteinase activities during promastigote-amastigote differentiation in vitro. Exp Parasitol 109(1):38–48

    Article  CAS  Google Scholar 

  35. Bourguignon SC, Cavalcanti DF, de Souza AM, Castro HC, Rodrigues CR, Albuquerque MG, Santos DO, da Silva GG, da Silva FC, Ferreira VF, de Pinho RT, Alves CR (2011) Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity. Exp Parasitol 127(1):160–166

    Article  CAS  Google Scholar 

  36. Bourguignon SC, Castro HC, Santos DO, Alves CR, Ferreira VF, Gama IL, Silva FC, Seguins WS, Pinho RT (2009) Trypanosoma cruzi: in vitro activity of Epoxy-alpha-Lap, a derivative of alpha-lapachone, on trypomastigote and amastigote forms. Exp Parasitol 122(2):91–96

    Article  CAS  Google Scholar 

  37. Pinho RT, Beltramini LM, Alves CR, De-Simone SG (2009) Trypanosoma cruzi: isolation and characterization of aspartyl proteases. Exp Parasitol 122(2):128–133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.R., Pereira, B.A.S., Silva-Almeida, M. et al. Why strategies to control Leishmania spp. multiplication based on the use of proteinase inhibitors should consider multiple targets and not only a single enzyme. J Mol Model 20, 2465 (2014). https://doi.org/10.1007/s00894-014-2465-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2465-4

Keywords

Navigation