Skip to main content
Log in

Hybrid coarse-grained/atomistic model of “chitosan + carbon nanostructures” composites

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present a new hybrid molecular dynamics model of chitosan oligomers which is constructed specifically for studying chitosan + carbon nanostructures composites, their structure and mechanical properties. The model is derived for application within the modified molecular mechanics force field AMBER. Method of virtual sites mapping allowed to retain hexagonal rings of chitosan backbone. Mass and structural disposition of virtual atoms has been found as function of joined groups’ atoms masses and coordinates. Geometrical parameters (e.g., bond length, valence angles, torsional angles and van der Waals distances) were found using semi-empirical methods. Parameters of interaction within the AMBER force field were estimated according to structural and energy characteristics of chitosan dimers and oligomers. Model has successfully passed multilevel verification based on comparison of its behaviour with atomistic chitosan within the same force field. It appeared that the model reproduces structural and energy characteristics of chitosan and its composites with carbon nanostructures. Moreover, it allows estimation of their mechanical properties. Dynamical characteristics of composite components are also well reproduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224. doi:10.1016/S0266-3538(00)00241-4

    Article  CAS  Google Scholar 

  2. Goosen MFA (1996) Applications of Chitin and Chitosan. CRC Press

  3. Kossovich LY, Salkovskiy YE, Kirillova IV (2010) Electrospun chitosan nanofiber materials as burn dressing. IFMBE Proceedings 31:1212–1214. doi:10.1007/978-3-642-14515-5_307

    Article  Google Scholar 

  4. Baldrick P (2009) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56(3):290–299. doi:10.1016/j.yrtph.2009.09.015

    Article  Google Scholar 

  5. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28. doi:10.1016/j.jconrel.2004.08.010

    Article  CAS  Google Scholar 

  6. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliver 59:1392–1412. doi:10.1016/j.addr.2007.04.021

    Article  CAS  Google Scholar 

  7. Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci Part B Polym Phys 47:1069–1077. doi:10.1002/polb.21711

    Article  CAS  Google Scholar 

  8. Thostenson ET, Li C, Chou T-W (2005) Nanocomposites in context. Compos Sci Technol 65:491–516. doi:10.1016/j.compscitech.2004.11.003

    Article  CAS  Google Scholar 

  9. Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351. doi:10.1021/bm100470q

    Article  CAS  Google Scholar 

  10. Manchado MAL, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43:1499–1505. doi:10.1016/j.carbon.2005.01.031

    Article  CAS  Google Scholar 

  11. Marrink SJ, de Vries AH, Mark AE (2004) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:750–760. doi:10.1021/jp036508g

    Article  CAS  Google Scholar 

  12. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Chem Biol 15:144–150. doi:10.1016/j.sbi.2005.02.005

    CAS  Google Scholar 

  13. Nielsen SO, Lopez CF, Srinivas G, Klein ML (2004) Coarse grain models and the computer simulation of soft materials. J Phys Condens Matter 16:481–512. doi:10.1088/0953-8984/16/15/R03

    Article  Google Scholar 

  14. Rudnicki WR, Bakalarski G, Lesyng B (2000) A mezoscopic model of nucleic acids. Part 1: Lagrangian and quaternion molecular dynamics. J Biomol Struct Dyn 17:1097–1108. doi:10.1080/07391102.2000.10506595

    Article  CAS  Google Scholar 

  15. Ahmad S, Johnson BF, Mackay SP et al. (2010) In silico modeling of drug-polymer interactions for pharmaceutical formulations. J R Soc Interface 7(4):423–433. doi:10.1098/rsif.2010.0190.focus

    Article  Google Scholar 

  16. Voth GA (2008) Coarse-graining of condensed phase and biomolecular systems. CRC Press

  17. Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473. doi:10.1021/jp044629q

    Article  CAS  Google Scholar 

  18. Liwo A, Czaplewski C, Pillardy J, Scheraga HA (2001) Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. J Chem Phys 115:2323–2347. doi:10.1063/1.1383989

    Article  CAS  Google Scholar 

  19. Izvekov S, Parrinello M, Burnham CJ, Voth GA (2004) Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching. J Chem Phys 120:10896–10913. doi:10.1063/1.1739396

    Article  CAS  Google Scholar 

  20. Rzepiela A, Louhivuori M, Peter C, Marrink S (2011) Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Phys Chem Phys 13:10437–10448. doi:10.1039/c0cp02981e

    Article  CAS  Google Scholar 

  21. Predeus AV, Gul S, Gopal SM, Feig M (2012) Conformational sampling of peptides in the presence of protein crowders from AA/CG-Multiscale simulations. J Phys Chem B 116(29):8610–8620. doi:10.1021/jp300129u

    Article  CAS  Google Scholar 

  22. Theodoru D (2005) Multiscale modeling of polymers. In: Yip S (ed) Handbook of materials modeling. Springer, Netherlands, pp 2757–2761

    Chapter  Google Scholar 

  23. Glukhova OE, Kirillova IV, Kolesnikova AS, Kossovich EL, Ten GN (2012) Strain-hardening effect of graphene on a chain of the chitosan for the tissue engineering. Proc SPIE 8233:82331E. doi:10.1117/12.907032

    Article  Google Scholar 

  24. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz Jr KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW , Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197. doi:10.1021/ja00124a002

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE et al (2009) Gaussian 09, Revision A.02. Gaussian Inc., Wallingford CT

  26. Glukhova OE (2009) Study of mechanical properties of peapod-like carbon nanotubes based on molecular-mechanics model. Physika volnovih processov i radiotehnicheskie systemi 12(1):69–75. (in Russian)

    Google Scholar 

  27. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19. doi:10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  28. http://lammps.sandia.gov

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS(4-2014-085) and financial support of Russian Foundation for Promotion of Small Business Development in Area of Science and Technology, Program “U.M.N.I.K.”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena L. Kossovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kossovich, E.L., Kirillova, I.V., Kossovich, L.Y. et al. Hybrid coarse-grained/atomistic model of “chitosan + carbon nanostructures” composites. J Mol Model 20, 2452 (2014). https://doi.org/10.1007/s00894-014-2452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2452-9

Keywords

Navigation