On the chemical behavior of C60 hosting H2O and other isoelectronic neutral molecules

  • Annia Galano
  • Adriana Pérez-González
  • Lourdes del Olmo
  • Misaela Francisco-Marquez
  • Jorge Rafael León-Carmona
Original Paper
Part of the following topical collections:
  1. Topical Collection QUITEL 2013


The density functional theory (DFT) was used to investigate the chemical behavior of C60 hosting neutral guest molecules (NGM). The deformed atoms in molecules (DAM) allowed identifying the regions of electron density depletion and accumulation. The studied NGM are CH4, NH3, H2O, and HF. Based on dipole moment and polarizabilities analyses it is predicted that the NGM@C60 should be more soluble in polar solvents than C60. The deformations on the surface electron density of the fullerenes explain this finding, which might be relevant for further applications of these systems. It was found that the intrinsic reactivity of studied NGM@C60 is only moderately higher than that of C60. This trend is supported by the global reactivity indexes and the frontier orbitals analyses. The free radical scavenging activity of the studied systems, via single electron transfer, was found to be strongly dependent on the chemical nature of the reacting free radical. The presence of the studied NGM inside the C60 influences only to some extent the reactivity of C60 toward free radicals. The distortion of the electron density on the C60 cage, caused by the NGM, is directly related to the electron withdrawing capacity of the later.

Chemical behavior of C60 hosting H2O and other isoelectronic neutral molecules
Graphical Abstract

The deformations on the surface electron density of the fullerenes explain their dipole moment andpolarizabilities, and thus their increased solubility. The presence of neutral molecules inside the cageinfluences only to some extent the reactivity of C60.


Deformed atoms in molecules Free radicals Fullerene Rate constants Reactivity indexes Solubility 



The authors gratefully acknowledge Prof. Rafael López, at Universidad Autónoma de Madrid for his valuable comments. This work was partially supported by the projects SEP-CONACyT 167491. J.R.L.-C. acknowledges the economic support of the Program of Postdoctoral Scholarships from DGAPA (UNAM). L.O. thanks Project LIQUORGAS-S2009/PPQ-1545, Comunidad de Madrid, for financial support. We thank the Laboratorio de Visualización y Cómputo Paralelo at Universidad Autónoma Metropolitana-Iztapalapa for the access to computing facilities.

Supplementary material

894_2014_2412_MOESM1_ESM.pdf (124 kb)
ESM 1 (PDF 124 kb)


  1. 1.
    Saunders M, Jiménez-Vázquez HA, Cross RJ, Poreda RJ (1993) Stable compounds of helium and neon: He@C60 and Ne@C60. Science 259:1428–1430CrossRefGoogle Scholar
  2. 2.
    Saunders M, Cross RJ, Jiménez-Vázquez HA, Shimshi R, Khong A (1996) Noble gas atoms inside fullerenes. Science 271:1693–1697CrossRefGoogle Scholar
  3. 3.
    Pietzak B, Waiblinger M, Almeida MT, Weidinger A, Höhne M, Dietel E, Hirsch A (1997) Buckminsterfullerene C60: a chemical faraday cage for atomic nitrogen. Chem Phys Lett 279:259–263Google Scholar
  4. 4.
    Shabtai E, Weitz A, Haddon RC, Hoffman RE, Rabinovitz M, Khong A, Cross RJ, Saunders M, Cheng PC, Scott LT (1998) 3He NMR of He@C60 6− and He@C70 6−. New records for the most shielded and the most deshielded 3He inside a fullerene. J Am Chem Soc 120:6389–6393CrossRefGoogle Scholar
  5. 5.
    Nishibori E, Takata M, Sakata M, Tanaka H, Hasegawa M, Shinohara H (2000) Giant motion of La atom inside C82 cage. Chem Phys Lett 330:497–502Google Scholar
  6. 6.
    Peres T, Cao B, Cui W, Khong A, Cross RJ, Saunders M, Lifshitz C (2001) Some new diatomic molecule containing endohedral fullerenes. Int J Mass Spectrom 210:241–247Google Scholar
  7. 7.
    Murata Y, Murata M, Komatsu K (2003) 100 % encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H2@C60. J Am Chem Soc 125:7152–7153CrossRefGoogle Scholar
  8. 8.
    Shimotani H, Ito T, Iwasa Y, Taninaka A, Shinohara H, Nishibori E, Takata M, Sakata M (2004) Quantum chemical study on the configurations of encapsulated metal ions and the molecular vibration modes in endohedral dimetallofullerene La2@C80. J Am Chem Soc 126:364–369CrossRefGoogle Scholar
  9. 9.
    Murata M, Murata Y, Komatsu K (2006) Synthesis and properties of endohedral C60 encapsulating molecular hydrogen. J Am Chem Soc 128:8024–8033CrossRefGoogle Scholar
  10. 10.
    Cimpoesu F, Ito S, Shimotani H, Takagi H, Dragoe N (2011) Vibrational properties of noble gas endohedral fullerenes. Phys Chem Chem Phys 13:9609–9615CrossRefGoogle Scholar
  11. 11.
    Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616CrossRefGoogle Scholar
  12. 12.
    Sabirov DS (2013) From endohedral complexes to endohedral fullerene covalent derivatives: a density functional theory prognosis of chemical transformation of water endofullerene H2O@C60 upon its compression. J Phys Chem C 117:1178–1182CrossRefGoogle Scholar
  13. 13.
    Murata M, Murata Y, Komatsu K (2008) Surgery of fullerenes. Chem Commun 46:6083–6094CrossRefGoogle Scholar
  14. 14.
    Whitener KE, Frunzi M, Iwamatsu S, Murata S, Cross RJ, Saunders M (2008) Putting ammonia into a chemically opened fullerene. J Am Chem Soc 130:13996–13999CrossRefGoogle Scholar
  15. 15.
    Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131:3392–3395CrossRefGoogle Scholar
  16. 16.
    Balch AL (2011) H2O in a desert of carbon atoms. Science 333:531–532CrossRefGoogle Scholar
  17. 17.
    Beduz C, Carravetta M, Chen JYC, Concistrè M, Denning M, Frunzi M, Horsewill AJ, Johannessen OG, Lawler R, Lei X, Levitt MH, Li Y, Mamone S, Murata Y, Nagel U, Nishida T, Ollivier J, Rols S, Rõõm T, Sarkar R, Turro NJ, Yang Y (2012) Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proc Natl Acad Sci 109:12894–12898CrossRefGoogle Scholar
  18. 18.
    Li Y, Chen JYC, Lei X, Lawler RG, Murata Y, Komatsu K, Turro NJ (2012) Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. J Phys Chem Lett 3:1165–1168Google Scholar
  19. 19.
    Zhang R, Murata M, Wakamiya A, Murata Y (2013) Synthesis and X-ray structure of endohedral fullerene C60 dimer encapsulating a water molecule in each C60 cage. Chem Lett 42:879–881CrossRefGoogle Scholar
  20. 20.
    Ramachandran CN, Sathyamurthy N (2005) Water clusters in a confined nonpolar environment. Chem Phys Lett 410:348–351Google Scholar
  21. 21.
    Yagi K, Watanabe D (2009) Infrared spectra of water molecule encapsulated inside fullerene studied by instantaneous vibrational analysis. Int J Quantum Chem 109:2080–2090CrossRefGoogle Scholar
  22. 22.
    Bucher D (2012) Orientational relaxation of water trapped inside C60 fullerenes. Chem Phys Lett 534:38–42Google Scholar
  23. 23.
    Hernández-Rojas J, Monteseguro V, Bretón J, Gomez-Llorente JM (2012) Water clusters confined in icosahedral fullerene cavities. Chem Phys 399:240–244Google Scholar
  24. 24.
    Xu B, Chen X (2013) Electrical-driven transport of endohedral fullerene encapsulating a single water molecule. Phys Rev Lett 110:156103, 5 pagesCrossRefGoogle Scholar
  25. 25.
    Rehaman A, Gagliardi L, Pyykkö P (2007) Pocket and antipocket conformations for the CH4@C84 endohedral fullerene. Int J Quantum Chem 107:1162–1169CrossRefGoogle Scholar
  26. 26.
    Ren XY, Jiang CY, Wang J, Liu ZY (2008) Endohedral complex of fullerene C60 with tetrahedrane, C4H4@C60. J Mol Graph Model 27:558–562Google Scholar
  27. 27.
    Ren XY, Jiang CY (2012) Density functional studies on the endohedral complex of fullerene C70 with tetrahedrane (C4H4): C4H4@C70. J Mol Model 18:3213–3217CrossRefGoogle Scholar
  28. 28.
    Wang GW, Wu P, Tian ZG (2009) Endohedral 1H NMR chemical shifts of H2-, H2O- and NH3-encapsulated fullerene compounds: accurate calculation and prediction. Eur J Org Chem 2009:1032–1041CrossRefGoogle Scholar
  29. 29.
    Peng S, Li XJ, Zhang DX, Zhang Y (2009) A computational study of the endohedral fullerene GeH4@C60. Struct Chem 20:789–794CrossRefGoogle Scholar
  30. 30.
    Medrek M, Pluciński F, Mazurek AP (2013) Endohedral complexes of fullerene C60 with small convalent molecules (H2O, NH3, H2, 2H2, 3H2, 4H2, O2, O3) in the context of potential drug transporter system. Acta Pol Pharm 70:659–665Google Scholar
  31. 31.
    Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254:1183–1185CrossRefGoogle Scholar
  32. 32.
    McEwen CN, McKay RG, Larsen BS (1992) C60 as a radical sponge. J Am Chem Soc 114:4412–4414CrossRefGoogle Scholar
  33. 33.
    Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G (2002) Fullerenes as a tert-butylperoxy radical trap, metal catalyzed reaction of tert-butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOtBu)4 and C70(OOtBu)10. J Am Chem Soc 124:13384–13385CrossRefGoogle Scholar
  34. 34.
    Morton JR, Preston KF, Krusic PJ, Hill SA, Wasserman E (1992) ESR studies of the reaction of alkyl radicals with fullerene (C60). J Phys Chem 96:3576–3578Google Scholar
  35. 35.
    Borghi R, Lunazzi L, Placucci G, Krusic PJ, Dixon DA, Matsuzawa N, Ata M (1996) Addition of aryl and fluoroalkyl radicals to fullerene C70: ESR detection of five regioisomeric adducts and density functional calculations. J Am Chem Soc 118:7608–7617CrossRefGoogle Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.08. Gaussian, Inc, WallingfordGoogle Scholar
  37. 37.
    Dunning TH, Hay PJ (1976) Modern theoretical chemistry. Schaefer HF III (ed) vol. 3, Plenum, New York, pp 1–28Google Scholar
  38. 38.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  39. 39.
    Burke K, Perdew JP, Wang Y (1998) In: Electronic density functional theory: recent progress and new directions. Dobson JF, Vignale G, and Das MP (eds) Plenum, New York,pp 81–111Google Scholar
  40. 40.
    Perdew JP (1991) In: Electronic structure of solids‘91. Ziesche P and Eschrig H (eds). Akademie, Berlin, pp 11–20Google Scholar
  41. 41.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  42. 42.
    Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  43. 43.
    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396Google Scholar
  44. 44.
    López R, Fernández-Rico J, Ramírez G, Ema I, Zorrilla D (2009) DAMQT: a package for the analysis of electron density in molecules. Comput Phys Commun 180:1654–1660CrossRefGoogle Scholar
  45. 45.
    Lichtenberger DL, Nebesny KW, Ray CD, Huffman DR, Lamb LD (1991) Valence and core photoelectron spectroscopy of C60, buckminsterfullerene. Chem Phys Lett 176:203–208Google Scholar
  46. 46.
    Palpant B, Negishi Y, Sanekata M, Miyajima K, Nagao S, Judai K, Rayner DM, Simard B, Hackett PA, Nakajima A, Kaya K (2001) Electronic and geometric properties of exohedral sodium- and gold-fullerenes. J Chem Phys 114:8459–8466Google Scholar
  47. 47.
    Yao X, Ruskell TG, Workman RK, Sarid D, Chen D (1996) Scanning tunneling microscopy and spectroscopy of individual C60 molecules on Si(100)-2 × 1 surfaces. Surf Sci Lett 366:L743–L749CrossRefGoogle Scholar
  48. 48.
    Compagnon I, Antoine R, Broyer M, Dugourd P, Lermé J, Rayane D (2001) Electric polarizability of isolated C70 molecules. Phys Rev A 64:025201, 4 pagesCrossRefGoogle Scholar
  49. 49.
    Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725Google Scholar
  50. 50.
    Fukui K (1971) Recognition of stereochemical paths by orbital interaction. Acc Chem Res 4:57–64CrossRefGoogle Scholar
  51. 51.
    Manolopoulos DE, May JC, Down SE (1991) Theoretical studies of the fullerenes: C34 to C70. Chem Phys Lett 181:105–111Google Scholar
  52. 52.
    Liu X, Schmalz TG, Klein DJ (1992) Favorable structures for higher fullerenes. Chem Phys Lett 188:550–554Google Scholar
  53. 53.
    Diener MD, Alford JM (1998) Isolation and properties of small-bandgap fullerenes. Nature 393:668–671CrossRefGoogle Scholar
  54. 54.
    Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  55. 55.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807Google Scholar
  56. 56.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  57. 57.
    Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975Google Scholar
  58. 58.
    Parr RG, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  59. 59.
    Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970Google Scholar
  60. 60.
    Gázquez JL (2008) Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10Google Scholar
  61. 61.
    Galano A, Álvarez-Diduk R, Ramírez-Silva MT, Alarcón-Ángeles G, Rojas-Hernández A (2009) Role of the reacting free radicals on the antioxidant mechanism of curcumin. Chem Phys 363:13–23Google Scholar
  62. 62.
    Galano A, Vargas R, Martinez A (2010) Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys Chem Chem Phys 12:193–200CrossRefGoogle Scholar
  63. 63.
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115Google Scholar
  64. 64.
    Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894CrossRefGoogle Scholar
  65. 65.
    Truhlar DG, Hase WL, Hynes JT (1983) Current status of transition-state theory. J Phys Chem 87:2664–2682Google Scholar
  66. 66.
    Marcus RA (1965) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196Google Scholar
  67. 67.
    Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610CrossRefGoogle Scholar
  68. 68.
    Nelsen SF, Blackstock SC, Kim Y (1987) Estimation of inner shell Marcus terms for amino nitrogen compound by molecular orbital calculations. J Am Chem Soc 109:677–682CrossRefGoogle Scholar
  69. 69.
    Nelsen SF, Weaver MN, Luo Y, Pladziewicz JR, Ausman LK, Jentzsch TL, O'Konek JJ (2006) Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data. J Phys Chem A 110:11665–11676Google Scholar
  70. 70.
    Francisco-Marquez M, Galano A, Martinez A (2010) On the free radical scavenging capability of carboxylated single-walled carbon nanotubes. J Phys Chem C 114:6363–6370CrossRefGoogle Scholar
  71. 71.
    Martínez A, Francisco-Marquez M, Galano A (2010) Effect of different functional groups on the free radical scavenging capability of single-walled carbon nanotubes. J Phys Chem C 114:14734–14739CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Annia Galano
    • 1
  • Adriana Pérez-González
    • 1
  • Lourdes del Olmo
    • 2
  • Misaela Francisco-Marquez
    • 3
  • Jorge Rafael León-Carmona
    • 1
    • 4
  1. 1.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMéxicoMexico
  2. 2.Departamento de Química Física Aplicada, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto Politécnico Nacional-UPIICSAMéxicoMexico
  4. 4.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations