Skip to main content
Log in

Dual-inhibitors of STAT5 and STAT3: studies from molecular docking and molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Although molecularly targeted therapy with imatinib has improved treatments of chronic myeloid leukemia (CML), clinical resistance gradually develops in patients with accelerated or blast phase CML. The inability of imatinib to cure CML suggests that inactivation of BCR-ABL kinase activity alone is not sufficient to control the disease. Aberrant STAT signaling and constitutive STAT5 or STAT3 activation are frequently found in both acute and chronic leukemia. Constitutive activation of STAT5 and STAT3 are associated with imatinib resistance on leukemia cells. Development of drugs targeting SH2 domains of STAT5 and STAT3 provides a novel strategy for the treatment of the imatinib-resistant CML. Here, molecular docking and molecular dynamics simulations were used to investigate the interactions of the drugs targeting STAT3 and STAT5 receptors at molecular level. The calculated binding free energies are consistent with the ranking of the experimental affinities and our simulations also explained their differences in binding energy. Then virtual screening based on molecular docking and molecular dynamics was applied to screen a set of ~1500 compounds for dual inhibitors of the SH2 domains of STAT5 and STAT3. Three top score compounds obtained in virtual screening were compound 660, 304, and 561. Results show that the three predicted dual-inhibitors are well fitted within the two binding domains and are predicted to present improved STAT5 and STAT3 SH2 inhibitory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. An X, Tiwari AK, Sun Y, Ding PR, Ashby CR, Chen ZS (2010) Leuk Res 34:1255–1268

    Article  CAS  Google Scholar 

  2. Bauer S, Romvari E (2009) Clin J Oncol Nurs 13:523–534

    Article  Google Scholar 

  3. Vaidya S, Ghosh K, Vundinti BR (2011) Eur J Haematol 87:381–393

    Article  CAS  Google Scholar 

  4. Pene-Dumitrescu T, Smithgall TE (2010) J Biol Chem 285:21446–21457

    Article  CAS  Google Scholar 

  5. Noor SM, Bell R, Ward AC (2011) Crit Rev Oncol Hematol 78:33–44

    Article  Google Scholar 

  6. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T (2003) N Engl J Med 348:994–1004

    Article  Google Scholar 

  7. Hochhaus A (2006) Ann Oncol 17:274–279

    Article  Google Scholar 

  8. Mahon FX, Deininger MWN, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV (2000) Blood 96:1070–1079

    CAS  Google Scholar 

  9. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Sci Signal 293:876–880

    CAS  Google Scholar 

  10. Bixby D, Talpaz M (2010) Leukemia 25:7–22

    Article  Google Scholar 

  11. Roychowdhury S, Talpaz M (2011) Blood Rev 25:279–290

    Article  Google Scholar 

  12. Benekli M, Baer MR, Baumann H, Wetzler M (2003) Blood 101:2940–2954

    Article  CAS  Google Scholar 

  13. Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW, Hochhaus A, Neubauer A, Burchert A (2007) Blood 109:2147–2155

    Article  CAS  Google Scholar 

  14. Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Hölbl A, Gleixner KV, Dworzak M, Mayerhofer M, Hoermann G (2011) Blood 117:3409–3420

    Article  CAS  Google Scholar 

  15. Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA (2008) Mol Cancer Ther 7:3169–3175

    Article  CAS  Google Scholar 

  16. Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA, Fajmann S, Grebien F, Warsch W, Stengl G (2010) EMBO Mol Med 2:98–110

    Article  CAS  Google Scholar 

  17. Leeman RJ, Lui VWY, Grandis JR (2006) Expert Opin Biol Ther 6:231–241

    Article  CAS  Google Scholar 

  18. Darnell JE (2005) Nat Med 11:595–596

    Article  CAS  Google Scholar 

  19. McMurray JS (2008) Biopolymers 90:69–79

    Article  CAS  Google Scholar 

  20. Nelson EA, Sharma SV, Settleman J, Frank DA (2011) Oncotarget 2:518–524

    Google Scholar 

  21. Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Chem Biol 13:1235–1242

    Article  CAS  Google Scholar 

  22. Hao W, Hu Y, Niu C, Huang X, Chang CPB, Gibbons J, Xu J (2008) Bioorg Med Chem Lett 18:4988–4992

    Article  CAS  Google Scholar 

  23. Song H, Wang R, Wang S, Lin J (2005) Proc Natl Acad Sci U S A 102:4700–4705

    Article  CAS  Google Scholar 

  24. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip MLR, Jove R, McLaughlin MM, Lawrence NJ (2007) Proc Natl Acad Sci U S A 104:7391–7396

    Article  CAS  Google Scholar 

  25. Schust J, Berg T (2004) Anal Biochem 330:114–118

    Article  CAS  Google Scholar 

  26. Shahani VM, Yue P, Haftchenary S, Zhao W, Lukkarila JL, Zhang X, Ball D, Nona C, Gunning PT, Turkson J (2010) ACS Med Chem Lett 2:79–84

    Article  Google Scholar 

  27. Bhasin D, Cisek K, Pandharkar T, Regan N, Li C, Pandit B, Lin J, Li PK (2008) Bioorg Med Chem Lett 18:391–395

    Article  CAS  Google Scholar 

  28. Lin L, Deangelis S, Foust E, Fuchs J, Li C, Li PK, Schwartz EB, Lesinski GB, Benson D, Lu J (2010) Mol Cancer 9:217

    Article  CAS  Google Scholar 

  29. Lin L, Hutzen B, Li PK, Ball S, Zuo M, DeAngelis S, Foust E, Sobo M, Friedman L, Bhasin D (2010) Neoplasia 12:39–50

    CAS  Google Scholar 

  30. Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E, Laudano A, Sebti S, Hamilton AD, Jove R (2001) J Biol Chem 276:45443–45455

    Article  CAS  Google Scholar 

  31. Bharti AC, Donato N, Aggarwal BB (2003) J Immunol 171:3863–3871

    Article  CAS  Google Scholar 

  32. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A (1996) Nature 379:645–648

    Article  CAS  Google Scholar 

  33. Iwamaru A, Szymanski S, Iwado E, Aoki H, Yokoyama T, Fokt I, Hess K, Conrad C, Madden T, Sawaya R (2006) Oncogene 26:2435–2444

    Article  Google Scholar 

  34. Faderl S, Ferrajoli A, Harris D, Van Q, Priebe W, Estrov Z (2005) Anticancer Res 25:1841–1850

    CAS  Google Scholar 

  35. Müller J, Sperl B, Reindl W, Kiessling A, Berg T (2008) Chembiochem 9:723–727

    Article  Google Scholar 

  36. Tanimoto TT (1957) Nov 17:1957

  37. Zhu T, Cao S, Su P-C, Patel R, Shah D, Chokshi HB, Szukala R, Johnson ME, Hevener KE (2013) J Med Chem 56:6560–6572

    Article  CAS  Google Scholar 

  38. Becker S, Groner B, Muller CW (1998) Nature 394:145–151

    Article  CAS  Google Scholar 

  39. Neculai D, Neculai AM, Verrier S, Straub K, Klumpp K, Pfitzner E, Becker S (2005) J Biol Chem 280:40782–40787

    Article  CAS  Google Scholar 

  40. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  41. Gasteiger J, Marsili M (1980) Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  42. Hou T, Wang J, Li Y, Wang W (2011) J Chem Inf Model 51:69–82

    Article  CAS  Google Scholar 

  43. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  44. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  45. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Chem Phys 23:327–341

    CAS  Google Scholar 

  46. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    CAS  Google Scholar 

  47. Yang Y, Shen Y, Li S, Jin N, Liu H, Yao X (2012) Mol BioSyst 8:3049–3060

    Article  CAS  Google Scholar 

  48. Turkson J, Kim JS, Zhang S, Yuan J, Huang M, Glenn M, Haura E, Sebti S, Hamilton AD, Jove R (2004) Mol Cancer Ther 3:261–269

    CAS  Google Scholar 

  49. Park IH, Li C (2010) J Mol Recognit 24:254–265

    Article  Google Scholar 

  50. Klebe G (2009) The foundations of protein–ligand interaction In: From molecules to medicines. Springer, Heidelberg, pp 79-101

  51. Wang J, Morin P, Wang W, Kollman PA (2001) J Am Chem Soc 123:5221–5230

    Article  CAS  Google Scholar 

  52. Barakat K, Mane J, Friesen D, Tuszynski J (2010) J Mol Graph Model 28:555–568

    CAS  Google Scholar 

  53. Page BD, Khoury H, Laister RC, Fletcher S, Vellozo M, Manzoli A, Yue P, Turkson J, Minden MD, Gunning PT (2012) J Med Chem 55:1047–1055

    Article  CAS  Google Scholar 

  54. Zhang X, Yue P, Fletcher S, Zhao W, Gunning PT, Turkson J (2010) Biochem Pharmacol 79:1398–1409

    Article  CAS  Google Scholar 

  55. Fletcher S, Page BD, Zhang X, Yue P, Li ZH, Sharmeen S, Singh J, Zhao W, Schimmer AD, Trudel S (2011) ChemMedChem 6:1459–1470

    Article  CAS  Google Scholar 

  56. Shi C, Yu R, Shao S, Li Y (2012) J Mol Model 19:871–878

    Article  Google Scholar 

  57. Yu R, Craik DJ, Kaas Q (2011) PLoS Comput Biol 7:e1002011

    Article  CAS  Google Scholar 

  58. Velazquez-Campoy A, Todd MJ, Freire E (2000) Biochemistry 39:2201–2207

    Article  CAS  Google Scholar 

  59. Li L, Li Y, Zhang L, Hou T (2012) J Chem Inf Model 52:2715–2729

    Article  CAS  Google Scholar 

  60. Luque I, Freire E (2002) Proteins Struct Funct Bioinforma 49:181–190

    Article  CAS  Google Scholar 

  61. Leavitt S, Freire E (2001) Curr Opin Struct Biol 11:560–566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge a grant support from the Scientific Research Foundation for Returned Overseas Chinese Scholars and the State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Yu, R., Yu, Y. et al. Dual-inhibitors of STAT5 and STAT3: studies from molecular docking and molecular dynamics simulations. J Mol Model 20, 2399 (2014). https://doi.org/10.1007/s00894-014-2399-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2399-x

Keywords

Navigation