Skip to main content
Log in

Developing polarizable potential for molecular dynamics of Cm(III)-carbonate complexes in liquid water

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work we have developed a polarizable potential to study Cm(III) forming complexes with carbonate anions in liquid water. The potential was developed by employing an extension of the procedure that we used to study the hydration of lanthanoids(III) and actinoids(III). Force field performances were benchmarked against DFT results obtained by both geometry optimization and Car-Parrinello molecular dynamics. With this polarizable potential, we run extended molecular dynamics simulations in liquid water from which we were able to identify structural and dynamical properties of such systems. In particular, water exchange dynamics were analyzed in detail. We obtained an average of three water molecules in the first shell of Cm(III) that show a relatively fast exchange dynamic (faster than for bare ions). Summarizing these results, we were able to draw an analogy to the results from the lanthanoid(III) series. In particular, it seems that Cm(III) behaves more like Nd(III) than Gd(III), as one would expect based on the recent hydration results and on f orbital occupancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kemsley J (2010) With new fuel formulations reactors could extract more energy, reduce hazardous waste. Chem Eng News 88:29–31

    Article  Google Scholar 

  2. Kaltsoyannis N, Scott P (2007) The f elements, Oxford chemistry primers. Oxford University Press, Oxford

    Google Scholar 

  3. Peppard DF, Gray PR, Markus MM (1953) The actinide—lanthanide analogy as exemplified by solvent extraction behavior. J Am Chem Soc 75:6063–6064

    Article  CAS  Google Scholar 

  4. Wietzke R, Mazzanti M, Latour J-M, Pecaut J, Cordier P-Y, Madic C (1998) Lanthanide(III) Complexes of tripodal N-donor ligands: structural models for the species involved in solvent extraction of actinides(III). Inorg Chem 37:6690–6697

    Article  CAS  Google Scholar 

  5. Philippini V, Vercouter T, Vitorge P (2010) Evidence of different stoichiometries for the limiting carbonate complexes across the lanthanide(III) series. J Solution Chem 39:747–769

    Article  CAS  Google Scholar 

  6. Allard B, Kipatsi H, Liljenzin JO (1980) Expected species of uranium, neptunium and plutonium in neutral aqueous solutions. J Inorg Nucl Chem 42:1015–1027

    Article  CAS  Google Scholar 

  7. Helm L, Merbach AE (2005) Inorganic and bioinorganic solvent exchange mechanisms. Chem Rev 105:1923–1960

    Article  CAS  Google Scholar 

  8. D’Angelo P, Spezia R (2012) Hydration of lanthanoids(III) and actinoids(III): a theoretical/experimental saga. Chem Eur J 18:11162–11178

    Article  Google Scholar 

  9. Persson I, D’Angelo P, De Panfilis S, Sandstrom M, Eriksson L (2008) Hydration of lanthanoid(III) ions in aqueous solution and crystalline hydrates studied by EXAFS spectroscopy and crystallography: the myth of the “gadolinium break”. Chem Eur J 14:3056–3066

    Article  CAS  Google Scholar 

  10. Marjolin A, Gourlaouen C, Clavaguera C, Ren PY, Wu JC, Gresh N, Dognon J-P, Piquemal J-P (2012) Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies. Theo Chem Acc 131:1198

    Article  Google Scholar 

  11. Cossy C, Helm L, Powell DH, Merbach AE (1995) A change in coordination-number from 9 to 8 along the lanthanide(III) aqua ion series in solution — a neutron-diffraction study. New J Chem 19:27–35

    CAS  Google Scholar 

  12. Habenschuss A, Spedding FH (1979) The coordination (hydration) of rare earth ions in aqueous chloride solutions from x ray diffraction. I. TbCl3, DyCl3, ErCl3, TmCl3, and LuCl3. J Chem Phys 70:2797

    Article  CAS  Google Scholar 

  13. Kuta J, Clark AE (2010) Trends in aqueous hydration across the 4f period assessed by reliable computational methods. Inorg Chem 49:7808–7817

    Article  CAS  Google Scholar 

  14. Ciupka J, Cao-Dolg X, Wiebke J, Dolg M (2010) Computational study of lanthanide(III) hydration. Phys Chem Chem Phys 12:13215–13223

    Article  CAS  Google Scholar 

  15. Kowall T, Foglia F, Helm L, Merbach AE (1995) Molecular dynamics simulation study of lanthanide ions Ln3+ in aqueous solution including water polarization. Change in coordination number from 9 to 8 along the series. J Am Chem Soc 117:3790–3799

    Article  CAS  Google Scholar 

  16. Floris FM, Tani A (2001) A study of aqueous solutions of lanthanide ions by molecular dynamics simulation with ab initio effective pair potentials. J Chem Phys 115:4750

    Article  CAS  Google Scholar 

  17. Duvail M, Spezia R, Vitorge P (2008) A dynamic model to explain hydration behaviour along the Lanthanide series. ChemPhysChem 9:693–696

    Article  CAS  Google Scholar 

  18. Clavaguéra C, Pollet R, Soudan JM, Brenner V, Dognon J-P (2005) Molecular dynamics study of the hydration of lanthanum(III) and europium(III) including many-body effects. J Phys Chem B 109:7614–7616

    Article  Google Scholar 

  19. Beuchat C, Hagberg D, Spezia R, Gagliardi L (2010) The hydration of lanthanide-chloride salts: a quantum chemical and classical molecular dynamics simulation study. J Phys Chem B 114:15590–15597

    Article  CAS  Google Scholar 

  20. Villa A, Hess B, Saint-Martin H (2009) Dynamics and structure of Ln(III) − aqua ions: a comparative molecular dynamics study using ab initio based flexible and polarizable model potentials. J Phys Chem B 113:7270–7281

    Article  CAS  Google Scholar 

  21. Meier W, Bopp P, Probst MM, Spohr E, Lin JL (1990) Molecular dynamics studies of lanthanum chloride solutions. J Phys Chem 94:4672–4682

    Article  CAS  Google Scholar 

  22. Skanthakumar S, Antonio M, Wilson R, Soderholm L (2007) The curium aqua ion. Inorg Chem 46:3485–3491

    Article  CAS  Google Scholar 

  23. Galbis E, Hernandez-Cobos J, Den Auwer C, Naour CL, Guillaumont D, Simoni E, Pappalardo RR, Sanchez-Marcos E (2010) Solving the hydration structure of the heaviest actinide aqua ion known: the californium(III) case. Angew Chem Int Ed 49:3811–3815

    Article  CAS  Google Scholar 

  24. Real F, Trumm M, Schimmelpfennig B, Masella M, Vallet V (2013) Further insights in the ability of classical nonadditive potentials to model actinide ionwater interactions. J Comput Chem 34:707–719

    Article  CAS  Google Scholar 

  25. Brendebach B, Banik NL, Marquardt CM, Rothe J, Denecke M, Geckeis H (2009) X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values. Radiochim Acta 97:701–708

    CAS  Google Scholar 

  26. Allen P, Bucher J, Shuh DK, Edelstein NM, Craig I (2000) Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg Chem 39:595–601

    Article  CAS  Google Scholar 

  27. Lindqvist-Reis P, Apostolidis C, Rebizant J, Morgenstern A, Klenze R, Walter O, Fanghanel T, Haire RG (2007) The structures and optical spectra of hydrated transplutonium ions in the solid state and in solution. Angew Chem Int Ed 46:919–922

    Article  CAS  Google Scholar 

  28. Revel R, Den Auwer C, Madic C, David F, Fourest B, Hubert S, Le Du J, Morss LR (1999) First investigation on the L edges of the 249Cf aquo ion by X-ray absorption spectroscopy. Inorg Chem 38:4139–4141

    Article  CAS  Google Scholar 

  29. Antonio M, Soderholm L, Williams CW, Blaudeau J-P, Bursten B (2001) Neptunium redox speciation. Radiochim Acta 89:17–25

    Article  CAS  Google Scholar 

  30. Wiebke J, Moritz A, Cao X, Dolg M (2007) Approaching actinide(+III) hydration from first principles. Phys Chem Chem Phys 9:459–465

    Article  CAS  Google Scholar 

  31. Hagberg D, Bednarz E, Edelstein NM, Gagliardi L (2007) A quantum chemical and molecular dynamics study of the coordination of Cm(III) in water. J Am Chem Soc 129:14136–14137

    Article  CAS  Google Scholar 

  32. Spezia R, Jeanvoine Y, Beuchat C, Gagliardi L, Vuilleumier R (2014) Hydration properties of Cm(III) and Th(IV) combining coordination free energy profiles with electronic structure analysis. Phys Chem Chem Phys 16:5824–5832

    Article  CAS  Google Scholar 

  33. D’Angelo P, Zitolo A, Migliorati V, Chillemi G, Duvail M, Vitorge P, Abadie S, Spezia R (2011) Revised ionic radii of lanthanoid(III) ions in aqueous solution. Inorg Chem 50:4572–4579

    Article  Google Scholar 

  34. D’Angelo P, Martelli F, Spezia R, Filipponi A, Denecke MA (2013) Hydration properties and ionic radii of actinide(III) ions in aqueous solution. Inorg Chem 52:10318–10324

    Article  Google Scholar 

  35. Duvail M, Vitorge P, Spezia R (2009) Building a polarizable pair interaction potential for lanthanoids(III) in liquid water: a molecular dynamics study of structure and dynamics of the whole series. J Chem Phys 130:104501

    Article  Google Scholar 

  36. Duvail M, Martelli F, Vitorge P, Spezia R (2011) Polarizable interaction potential for molecular dynamics simulations of actinoids(III) in liquid water. J Chem Phys 135:044503

    Article  Google Scholar 

  37. Martelli F, Jeanvoine Y, Vercouter T, Beuchat C, Vuilleumier R, Spezia R (2014) Hydration properties of Lanthanoid(III) carbonates complexes in liquid water by polarizable molecular dynamics simulations. Phys Chem Chem Phys 16:3693–3705

    Article  CAS  Google Scholar 

  38. Jeanvoine Y, Miro P, Martelli F, Cramer CJ, Spezia R (2012) Electronic structure and bonding of lanthanoid(III) carbonates. Phys Chem Chem Phys 14:14822–14831

    Article  CAS  Google Scholar 

  39. Runde W, Neu MP, Van Pelt C, Scott BL (2000) Single crystal and solution complex structure of Nd(CO3)4 5−. The first characterization of a mononuclear lanthanide(III) carbonato complex. Inorg Chem 39:1050–1051

    Article  CAS  Google Scholar 

  40. Janicki R, Starynowicz P, Mondry A (2011) Lanthanide carbonates. Eur J Inorg Chem 2011:3601–3616

    Article  CAS  Google Scholar 

  41. Sherry HS, Marinsky JA (1963) Carbonate and bicarbonate complexes of neodymium and europium. Inorg Chem 3:330–335

    Article  Google Scholar 

  42. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  43. Vercouter T, Vitorge P, Trigoulet N, Giffaut E, Moulin C (2005) Eu(CO3)(3) (3-) and the limiting carbonate complexes of other M3+ f-elements in aqueous solutions: a solubility and TRLFS study. New J Chem 29:544–553

    Article  CAS  Google Scholar 

  44. Philippini V, Vercouter T, Aupiais J, Topin S, Ambard C, Chaussé A, Vitorge P (2008) Evidence of different stoichiometries for the limiting carbonate complexes across the lanthanide(III) series: a capillary electrophoresis-mass spectrometry study. Electrophoresis 29:2041–2050

    Article  CAS  Google Scholar 

  45. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  47. Kuechle W, Dolg M, Stoll H, Preuss H (1994) Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J Chem Phys 100:7535

    Article  CAS  Google Scholar 

  48. Cao X, Dolg M, Stoll H (2003) Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J Chem Phys 118:487

    Article  CAS  Google Scholar 

  49. Cao X, Dolg M (2004) Segmented contraction scheme for small-core actinide pseudopotential basis sets. J Molec Struct (Theochem) 673:203–209

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  51. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  52. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  53. Spezia R, Tournois G, Tortajada J, Cartailler T, Gaigeot M-P (2006) Toward a DFT-based molecular dynamics description of Co(II) binding in sulfur rich peptides. Phys Chem Chem Phys 8:2040–2050

    Article  CAS  Google Scholar 

  54. Spezia R, Bresson C, Den Auwer C, Gaigeot M-P (2008) Solvation effects on structure and dynamics of Co(III)-cysteine complexes in water: a DFT-based molecular dynamics study. J Phys Chem B 112:6490–6499

    Article  CAS  Google Scholar 

  55. Ayala R, Spezia R, Vuilleumier R, Martinez JM, Pappalardo RR, Sanchez Marcos E (2010) An ab initio molecular dynamics study on the hydrolisis of Po(IV) aquaion in water. J Phys Chem B 114:12866–12874

    Article  CAS  Google Scholar 

  56. CPMD libraries freely available at www.cpmd.org/ for download

  57. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428

    Article  CAS  Google Scholar 

  58. Nose S (1984) A molecular-dynamics method of simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  CAS  Google Scholar 

  59. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635

    Article  Google Scholar 

  60. Hutter J, Alavi A, Deutsch T, Bernasconi M, Goedecker S, Marx D, Tuckerman MA, Parrinello M (eds) (2004) CPMD, version 3.12, IBM Research Division. IBM Corp and Max Planck Institute, Stuttgart, Germany

    Google Scholar 

  61. Duvail M, Souaille M, Spezia R, Cartailler T, Vitorge P (2007) Pair interaction potentials with explicit polarisation for molecular dynamics simulations of La3+ in bulk water. J Chem Phys 127:034503

    Article  Google Scholar 

  62. Martelli F, Vuilleumier R, Simonin J-P, Spezia R (2012) Varying the charge of small cations in liquid water: structural, transport and thermodynamical properties. J Chem Phys 137:164501

    Article  Google Scholar 

  63. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  64. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints — molecular-dynamics of N-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  65. Thole BT (1981) Molecular polarizabilities calculated with a modified dipole interaction. Chem Phys 59:341–350

    Article  CAS  Google Scholar 

  66. van Duijnen P, Swart M (1998) Molecular and atomic polarizabilities: Thole’s model revisited. J Phys Chem A 102:2399–2407

    Article  Google Scholar 

  67. Sprik M (1991) Computer simulation of the dynamics of induced polarization fluctuations in water. J Phys Chem 95:2283–2291

    Article  CAS  Google Scholar 

  68. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  69. Weiner SJ, Kollman PA, Case DA, Singh C, Ghio C, Alagona G, Profeta S Jr, Weine PA (1984) The comparative roles of the proton-acceptor properties of amide and carboxyl groups in influencing crystal packing patterns: doubly vs. singly hydrogen-bonded systems in N-acylamino acids and in other amide-acid crystals. J Am Chem Soc 106:765–767

    Article  CAS  Google Scholar 

  70. Souaille M, Loirat H, Borgis D, Gaigeot M-P (2009) MDVRY: a polarizable classical molecular dynamics package for biomolecules. Comput Phys Commun 180:276–301

    Article  CAS  Google Scholar 

  71. Hutchinson F, Wilson M, Madden PA (2001) A unified description of MCl3 systems with a polarizable ion simulation model. Mol Phys 99:811–824

    Article  CAS  Google Scholar 

  72. Salanne M, Simon C, Turq P, Madden PA (2008) Calculation of activities of ions in molten salts with potential application to the pyroprocessing of nuclear waste. J Phys Chem B 112:1177–1183

    Article  CAS  Google Scholar 

  73. Okamoto Y, Suzuki S, Shiwaku H, Ikeda-Ohno A, Yaita T, Madden PA (2010) Local coordination about La3+ in molten LaCl3 and its mixtures with alkali chlorides. J Phys Chem A 114:4664–4671

    Article  CAS  Google Scholar 

  74. Impey RW, Madden PA, McDonald IR (1983) Hydration and mobility of ions in solution. J Phys Chem 87:5071–5083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank ANR 2010 JCJC 080701 ACLASOLV (Actinoids and Lanthanoids Solvation) for grant support and Grand Equipement National de Calcul Intensif (GENCI) (grant x2013071870) for generous allocation of computing time. We thank Mrs. Elizabeth A. Kish for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Spezia.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spezia, R., Jeanvoine, Y. & Vuilleumier, R. Developing polarizable potential for molecular dynamics of Cm(III)-carbonate complexes in liquid water. J Mol Model 20, 2398 (2014). https://doi.org/10.1007/s00894-014-2398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2398-y

Keywords

Navigation