Skip to main content
Log in

External electric field effects on the mechanical properties of the αβ-tubulin dimer of microtubules: a molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanical properties of the αβ-tubulin dimer of microtubules was modeled by using the molecular dynamics (MD) simulation method. The effect on the mechanical properties of the dimer of the existence and nonexistence of an applied electric field, either constant or periodic, was studied. Since there are charged or polar groups in the dimer structure, the electric field can interact with the dimer. The elastic constant and Young’s modulus of the dimer were decreased when the dimer was exposed to a constant electric field of 0.03 V/nm. Furthermore, applying an oscillating electric field in the 1 GHz range to the dimer increased the elastic constant and Young’s modulus of the dimer. These parameters were related to dimer rigidity and, consequently, in this frequency range, the application of electric fields may affect the function of microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a,b
Fig. 4a,b

Similar content being viewed by others

References

  1. Nogales E, Wolf SG, Downing KH (1998) Structure of αβ-tubulin dimer by electron crystallography. Nature 391:199–203

    Article  CAS  Google Scholar 

  2. Nogales E, Whittaker M, Miligan RA, Downing KH (1999) High-resolution model of the microtubule. Cell 96:79–88

    Article  CAS  Google Scholar 

  3. Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of αβ-tubulin at 3.5 Å resolution. J Mol Biol 313:1045–1057

    Article  CAS  Google Scholar 

  4. Felgner H, Frank R, Schliwa M (1996) Flexural rigidity of microtubules measured with the use of optical tweezers. J Cell Sci 109:509–516

    CAS  Google Scholar 

  5. Pampaloni F, Lattanzi G, Jonas A, Surrey T, Frey E, Florin EL (2006) Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc Natl Acad Sci USA 103:10248–10253

    Article  CAS  Google Scholar 

  6. Wagner O, Zinke J, Dancker P, Grill W, Bereiter-Hahn J (1999) Viscoelastic properties of F-actin, microtubules, F-actin/a-actinin, and F-actin/hexokinase determined in microliter volumes with a novel nondestructive method. Biophys J 76:2784–2796

    Article  CAS  Google Scholar 

  7. Guo H, Xu C, Liu C, Qu E, Yuan M, Li Z, Cheng B, Zhang D (2006) Mechanism and dynamics of breakage of fluorescent microtubules. Biophys J 90:2093–2098

    Article  CAS  Google Scholar 

  8. Kis A, Kasas S, Babic B, Kulik AJ, Benoit W, Briggs GAD, Schonenberger C, Catsicas S, Forro L (2002) Nanomechanics of microtubules. Phys Rev Lett 89(1–4):248101

    Article  CAS  Google Scholar 

  9. Sept D, MacKintosh FC (2010) Microtubule elasticity: connecting All-atom simulations with continuum mechanics. Phys Rev Lett 104(1–4):018101

    Article  Google Scholar 

  10. Wells DB, Aksimentiev A (2010) Mechanical properties of a complete microtubule revealed through molecular dynamics simulation. Biophys J 99:629–637

    Article  CAS  Google Scholar 

  11. Soncini M, Enemark S, Aprodu I, Deriu M (2006) characterization of microtubule and motor proteins via molecular dynamics simulotion. CILEA 121–134

  12. Wu Z, Nogales E, Xing J (2012) Comparative studies of microtubule mechanics with two competing models suggest functional roles of alternative tubulin lateral interactions. Biophys J 102:2687–2689

    Article  CAS  Google Scholar 

  13. Feng S, Liang H (2012) A coarse grain model of microtubules. Theo Appl Mech Lett 2(1–4):014006

    Article  Google Scholar 

  14. Lohrasebi A, Mohamadi S, Fadaie S, Rafii-Tabar H (2012) Modelling the influence of thermal effects induced by radio frequency electric field on the dynamics of the ATPase nanobiomolecular motors. Physica Med 28:221–229

    Article  CAS  Google Scholar 

  15. Lin YS, Lin JH, Chang CC (2010) Molecular dynamics simulations of the rotary motor F0 under external electric fields across the membrane. Biophys J 98:1009–1017

    Article  CAS  Google Scholar 

  16. Xiang BY, Ngadi MO, Simpson BK, Simpson MV (2011) Pulsed electric field induced structural modification of soy protein isolate as studied by fluorescence spectroscopy. J Food Proc Preserv 35(5):563–570

    Article  CAS  Google Scholar 

  17. Singh A, Orsat V, Raghavan V (2013) Soybean hydrophobic protein response to external electric field: a molecular modeling approach. Biomolecules 3(1):168–179

    Article  CAS  Google Scholar 

  18. Khalili-Araghi F, Tajkhorshid E, Schulten K (2006) Dynamics of K+ ion conduction through Kv1.2. Biophys J 91:72–74

    Article  Google Scholar 

  19. Sajadi M, Lohrasebi A, Rafii-Tabar H (2013) Modeling the effect of a GHz electric field on the dynamics of K+ ions in KcsA potassium channel. Mol Sim 5:399–407

    Google Scholar 

  20. Hess B, Kutzner C, Van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comp 4:435–447

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lohrasebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeidi, H.R., Lohrasebi, A. & Mahnam, K. External electric field effects on the mechanical properties of the αβ-tubulin dimer of microtubules: a molecular dynamics study. J Mol Model 20, 2395 (2014). https://doi.org/10.1007/s00894-014-2395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2395-1

Keywords

Navigation