Skip to main content
Log in

Theoretical study of the NLO responses of some natural and unnatural amino acids used as probe molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The first hyperpolarizabilities β of the natural aromatic amino acids tryptophan and tyrosine have been investigated using several methods and basis sets. Some of the theoretical results obtained were compared to the only experimental hyper-Rayleigh scattering data available. The sensitivity of tryptophan to its local environment was analyzed by constructing two-dimensional potential energy plots around the dipeptide tryptophan-lysine. Static hyperpolarizabilities β(0) of the found minima were calculated by a second-order Møller–Plesset (MP2) method in combination with the 6-31 + G(d) basis set. Moreover, the efficiency of tryptophan and those of a series of unnatural amino acids as endogenous probe molecules were tested by calculating the nonlinear responses of some peptides. Impressive results were obtained for the amino acid ALADAN, which shows significantly improved nonlinear performance compared to other amino acids with weak nonlinear responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Millard AC, Compagnola PJ, Mohler W, Lewis A, Loew LM (2003) Biophoton B 361:47–69

    CAS  Google Scholar 

  2. Shen YR (1989) Annu Rev Phys Chem 40:327–350

    CAS  Google Scholar 

  3. Eisenthal KB (1996) Chem Rev 96(4):1343–1360

    Article  CAS  Google Scholar 

  4. Compagnola PJ, Wei MD, Lewis A, Loew LM (1999) Biophys J 77(6):3341–3349

    Article  Google Scholar 

  5. Compagnola PJ, Clark HA, Mohler WA, Lewis A, Loew LM (2001) J Biomed Opt 6:277–286

    Article  Google Scholar 

  6. Compagnola PJ, Loew LM (2003) Biotechnology 21(11):1356–1360

    Google Scholar 

  7. Moreaux L, Sandre O, Mertz J (2000) J Opt Soc Am B 17:1685–1694

    Article  CAS  Google Scholar 

  8. Corn RM, Higgins DA (1994) Chem Rev 94:107–125

    Article  CAS  Google Scholar 

  9. Shen YR (1994) Surf Sci 299/300:551–562

    Article  Google Scholar 

  10. Liebsch A (1994) Surf Sci 307–309:1007–1016

    Article  Google Scholar 

  11. Heinz TF (1991) Second-order nonlinear optical effects at surfaces and interfaces. Elsevier, Amsterdam

    Google Scholar 

  12. Zyss J (1994) Molecular nonlinear optics. Academic, Boston

  13. Zyss J, Oudar JL (1982) Phys Rev A 26:2028–2048

    Article  CAS  Google Scholar 

  14. Draguta S, Fonari MS, Masunov AE, Zazueta J, Sullivan S, Antipin MY, Timofeeva TV (2013) Cryst Eng Comm 15:4700–4710

    Article  CAS  Google Scholar 

  15. Salafsky JS (2006) J Chem Phys 125:074701

    Google Scholar 

  16. Salafsky JS (2007) Phys Chem Chem Phys 9(42):5704–5711

    Article  CAS  Google Scholar 

  17. Salafsky JS (2001) Chem Phys Lett 342:485–491

    CAS  Google Scholar 

  18. Salafsky JS (2003) Chem Phys Lett 381:705–709

    CAS  Google Scholar 

  19. Knoesen A, Pakalnis S, Wang M, Wise WD, Lee N, Frank CW (2004) IEEE J Sel Top Quantum Electron 10(5):1154–1163

    Article  CAS  Google Scholar 

  20. Smiley B, Vogel V (1995) J Chem Phys 103(8):3140–3144

    CAS  Google Scholar 

  21. Rativa D, Da Silva SJS, Del Nero J, Gomes ASL, De Araujo RE (2010) J Opt Soc Am B 27(12):2665–2668

    Article  CAS  Google Scholar 

  22. Roth S, Freund I (1979) J Chem Phys 70(4):1637–1643

    CAS  Google Scholar 

  23. Freund I, Deutsch M, Sprecher A (1986) Biophys J 50(4):693–712

    Article  CAS  Google Scholar 

  24. Hansen SFWP (1971) Appl Opt 10:2350–2353

    Article  Google Scholar 

  25. Mitchell SA (2006) J Chem Phys 125(1–14):044716

    CAS  Google Scholar 

  26. Levine BF, Bethea CG (1976) J Chem Phys 65:1989–1993

    CAS  Google Scholar 

  27. Rodrigues JJ, Silva CHTP, Zilio SC, Misoguti L, Mendonça CR (2002) Opt Mater 20:153–157

    Article  CAS  Google Scholar 

  28. Moreaux L, Sandre O, Charpak S, Blanchard-Desce M, Mertz J (2001) Biophys J 80:1568–1574

    Article  CAS  Google Scholar 

  29. Rieckhoff KE, Peticolas WJ (1965) Sciences 147:610–611

    Article  CAS  Google Scholar 

  30. Stoller P, Reiser KM, Celliers PM, Rubenchik AM (2002) Biophys J 82:3330–3342

    Article  CAS  Google Scholar 

  31. Stoller P, Kim BM, Rubenchik AM, Reiser KM, Da Silva LB (2002) J Biomed Opt 7:205–214

    Article  Google Scholar 

  32. Stoller P, Celliers PM, Reiser KM, Rubenchik AM (2003) Appl Opt 42:5209–5219

    Article  Google Scholar 

  33. Asselberghs I, Flors C, Ferrighi L, Botek E, Champagne B, Mizuno H, Ando R, Miyawaki A, Hofkens J, Van der Auweraer M, Clays K (2008) J Am Chem Soc 130:15713–15719

    Article  CAS  Google Scholar 

  34. De Meulenaere E, Asselberghs I, de Wergifosse M, Botek E, Spaepen S, Champagne B, Vanderleyden J, Clays K (2009) J Mater Chem 19:7514–7519

    Article  Google Scholar 

  35. De Meulenaere E, Vanderlinden W, Vanderleyden J, Clays K (2010) Proc SPIE 7765:77650–77658

    Article  Google Scholar 

  36. De Meulenaere E, de Wergifosse M, Botek E, Spaepen S, Champagne B, Vanderleyden J, Clays K (2010) J Nonlinear Opt Phys 19:1–13

    Article  Google Scholar 

  37. De Meulenaere E, Bich NN, de Wergifosse M, Van Hecke K, Van Meervelt L, Vanderleyden J, Champagne B, Clays K (2013) J Am Chem Soc 135:4061–4069

    Article  Google Scholar 

  38. Suponitsky KY, Tafur S, Masunov AE (2008) J Chem Phys 129:044109

    Google Scholar 

  39. Suponitsky KY, Masunov AE, Antipin MY (2008) Mendeleev Commun 18:265–267

    Article  CAS  Google Scholar 

  40. Suponitsky KY, Masunov AE, Antipin MY (2009) Mendeleev Commun 19:311–313

    Article  CAS  Google Scholar 

  41. Suponitsky KY, Masunov AE (2013) J Chem Phys 139:094310

    Google Scholar 

  42. Wang B-Q, Li Z-R, Wu D, Hao Z-Y, Li R-J, Sun C-C (2004) J Phys Chem A 108:2464–2469

    CAS  Google Scholar 

  43. Loison C, Simon D (2010) J Phys Chem A 114:7769–7779

    CAS  Google Scholar 

  44. Perry JM, Moad AJ, Begue NJ, Wampler RD, Simpson GJ (2005) J Phys Chem B 109:20009–20026

    CAS  Google Scholar 

  45. Moad AJ, Simpson GJ (2005) J Phys Chem A 109:1316–1323

    CAS  Google Scholar 

  46. Gualtieri EJ, Haupert LM, Simpson GJ (2008) Chem Phys Lett 465:167–174

    CAS  Google Scholar 

  47. Wanapun D, Wampler R, Beguer N, Simpson GJ (2008) Chem Phys Lett 455:6–12

    CAS  Google Scholar 

  48. Alparone A, Millefiori S (2005) Chem Phys Lett 416:282–288

    CAS  Google Scholar 

  49. Alparone A (2013) Phys Chem Chem Phys 15:12958–12962

    Article  CAS  Google Scholar 

  50. Mitchell SA, McAloney RA, Moffatt D, Mora-Diez N, Zgierski MZ (2005) J Chem Phys 122:114707–114708

    CAS  Google Scholar 

  51. Mitchell SA, McAloney RA (2004) J Phys Chem B 108:1020–1029

    CAS  Google Scholar 

  52. Miller CK, Ward JF (1977) Phys Rev A 16:1179–1185

    Article  CAS  Google Scholar 

  53. Berisio R, Vitagliano L, Mazzarella L, Zagari A (2002) Protein Sci 11:262–270

    Article  CAS  Google Scholar 

  54. Tuer A, Krouglov S, Cisek R, Tokarz D, Barzda V (2010) J Comput Chem 32:1128–1134

    Article  Google Scholar 

  55. Tretiak S, Chernyak V, Mukamel S (1996) Chem Phys Lett 259:55–61

    CAS  Google Scholar 

  56. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision D.02. Gaussian, Inc., Pittsburgh

  57. Derrar SN, Sekkal-Rahal M, Guemra K, Derreumaux P (2012) Int J Quant Chem 112:2735–2742

    Article  CAS  Google Scholar 

  58. Golden Software, Inc. (2002) Surface mapping system. Golden Software, Inc., Golden

  59. Viayan N, Rajasekaran S, Bhagavannarayana G, Ramesh Babu R, Gopalakrishnan R, Palanichamy M, Ramasamy P (2006) Cryst Growth Des 6(11):2441–2445

    Article  Google Scholar 

  60. Palaniswamy S, Balasundaram ON (2009) Rasayan J Chem 2(1):49–52

  61. Moitra S, Kar T (2010) Cryst Res Technol 45(1):70–74

    Article  CAS  Google Scholar 

  62. Lydia Caroline M, Vasudevan S (2008) Mater Lett 62(15):2245–2248

    Article  Google Scholar 

  63. Iyanar M, Thomas Joseph Prakash J, Muthamizhchelvan C, Ponnusamy S (2009) J Phys Sci 13:235–244

  64. Duboisset J, Matar G, Russier-Antoine I, Benichou E, Bachelier G, Jonin C, Fricheux D, Besson F, Brevet P–F (2010) J Phys Chem B 114:13861–13865

    CAS  Google Scholar 

  65. Liu H–Y, Tian JC, Ying X, Xu ZG, Liao SJ, Chang CK (2005) Chin J Struct Chem 24:263–268

    CAS  Google Scholar 

  66. Guthmuller J, Simon D (2006) J Phys Chem A 110:9967–9973

    CAS  Google Scholar 

  67. Cao X, Fischer G (1999) J Phys Chem A 103:9995–10003

    CAS  Google Scholar 

  68. Campagnon I, Hagemeister FC, Antoine R, Rayane D, Broyer M, Dugourd P, Hudgins RR, Jarrold MF (2001) J Am Chem Soc 123:8440–8441

    Article  Google Scholar 

  69. Kushawaha PS, Mishra PC (2000) J Photochem Photobiol A Chem 137:79–86

    Article  Google Scholar 

  70. Martinez SJ III, Alfano JC, Levy DH (1992) J Mol Spectrosc 156:421–430

    Article  CAS  Google Scholar 

  71. Rogers DM, Besley NA, O’Shea P, Hirst JD (2005) J Phys Chem B 109:23061–23069

    CAS  Google Scholar 

  72. Tong J, Li X–Y (2002) Chem Phys 284:543–554

    CAS  Google Scholar 

  73. Andersen OS, Greathouse DV, Providence LL, Becker MD, Koeppe RE II (1998) J Am Chem Soc 120:5142–5146

    Article  CAS  Google Scholar 

  74. Antoine R, Compagnon I, Rayane D, Broyer M, Dugourd P, Breaux G, Hagemeister FC, Pippen D, Hudgins RR, Jarrold MF (2002) Eur Phys J D 20:583–587

    Article  CAS  Google Scholar 

  75. Antosiewicz J (1995) Biophys J 69(4):1344–1354

    Article  CAS  Google Scholar 

  76. Flaig R, Koritsansky T, Zobel D, Luger P (1998) J Am Chem Soc 120:2227–2238

    Article  CAS  Google Scholar 

  77. Flaig R, Koritsanszky T, Dittrich B, Wagner A, Luger P (2002) J Am Chem Soc 124:3407–3417

    Article  CAS  Google Scholar 

  78. Yeargers E (1968) Biophys J 8:1505–1510

    Article  CAS  Google Scholar 

  79. Bombasaro JA, Rodriguez AM, Enriz RD (2005) J Mol Struct THEOCHEM 724:173–184

    Article  CAS  Google Scholar 

  80. Huang Z, Lin Z (2005) J Phys Chem A 109:2656–2659

    CAS  Google Scholar 

  81. Ladokhin AS, Holloway PW (1995) Biophys J 69(2):506–517

    Article  CAS  Google Scholar 

  82. Siu C–K, Ke Y, Guo Y, Hopkinson AC, Siu KWM (2008) Phys Chem Chem Phys 10:5908–5918

    Article  CAS  Google Scholar 

  83. Yurtsever E, Yuret D, Erman B (2006) J Phys Chem A 110:13933–13938

    CAS  Google Scholar 

  84. Shelton DP, Rice JE (1994) Chem Rev (Washington, D C) 94:3–29

    Article  CAS  Google Scholar 

  85. Suponitsky KY, Timofeeva TV, Antipin MY (2006) Russ Chem Rev 75:457–496

    Article  CAS  Google Scholar 

  86. Champagne B, Perpete EA, Jacquemin D, Van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (2000) J Phys Chem A 104:4755–4763

    CAS  Google Scholar 

  87. Wang J–N, Xu H–L, Sun S–L, Gao T, Li H–Z, Li H, Su Z–M (2011) J Comput Chem 33:231–236

    Article  CAS  Google Scholar 

  88. Rao L, Ke HW, Fu G, Xu X, Yan YJ (2009) J Chem Theory Comput 5:86–96

    Article  CAS  Google Scholar 

  89. Chan DI, Prenner EJ, Vogel HJ (2006) BBA Biomembranes 1758:1184–1202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author M S-R thanks the Alexander von Humboldt-Stiftung, Bonn for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sekkal-Rahal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derrar, S.N., Sekkal-Rahal, M., Derreumaux, P. et al. Theoretical study of the NLO responses of some natural and unnatural amino acids used as probe molecules. J Mol Model 20, 2388 (2014). https://doi.org/10.1007/s00894-014-2388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2388-0

Keywords

Navigation