Skip to main content
Log in

Methyl-methoxylpyrrolinone and flavinium nucleus binding signatures on falcipain-2 active site

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Following the increasing reports of human toxicity and plasmodium resistance to artemisinin and its derivatives, falcipain-2 (FP-2) is now emerging as the choice antimalarial drug target. Coincidentally, FP-2 is the in vivo target of naturally occurring, therapeutically safe flavonoids (stenopalustroside, myricetin, and fisetin) and symplostatin (symplostatin 4) compounds known to exhibit potent in vitro and in vivo antiplasmodial actions. Here, the structural bases for their inhibitory actions have been studied using molecular dynamics simulation. Myricetin and fisetin act as proton transfer tunnel breakers by inserting between His174 and Cys42, which are key active site residues of FP-2, stenopalustroside inhibits the polarization of His174 by Asn173; a major preparatory step for Cys42/His174 proton transfer process. The roles of flavonoids are favored by T-shaped pi–pi interactions with His174. Symplostatin 4 inserts its methyl-methoxylpyrrolinone moiety into the active site where its proton acceptor function prepares Cys42 for nucleophilic attack on the Michael α,β-unsaturated bonds on its 4(S)-amino-2(E)-pentenoate moiety. Further analyses of the structures identified a unique bridge formed on FP-2 active site groove by stenopalustroside and symplostatin 4 during interaction with the sub-site I of FP-2, whereas fisetin preferentially interacts with sub-site II and myricetin interacts with sub–site III residues. Ultimately, symplostatin-4, myricetin, and fisetin were better than stenopalustroside at trapping FP-2 in its inactive state as revealed by comparative RSMD plots with X-ray structures of FP-2 co-crystallized with inhibitors. Comparative estimates of free energy of binding using the Molecular Mechanics-Poisson Boltzmann Surface Area (MMPBSA) method suggested that His174 protonation may further enhance stenopalustroside–FP-2 interaction. The unique binding signatures of the ligands within the FP-2 active site groove and its sub-sites may explain the subtle differences in their IC50 values and their mechanism of inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. International Artemisinin Study Group (2004) Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363:9–17

    Article  Google Scholar 

  2. World Health Organization (2006) Guidelines for the treatment of malaria, 1st edn. World Health Organization, Geneva

    Google Scholar 

  3. Kyaw MP, Nyunt MH, Chit K, Aye MM, Aye KH et al (2013) Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS ONE 8(3):e57689

    Article  CAS  Google Scholar 

  4. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D et al (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620

    Article  CAS  Google Scholar 

  5. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW (2004) The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4(6):327–336

    Article  Google Scholar 

  6. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC et al (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505(7481):50–55

    Article  Google Scholar 

  7. Travassos MA, Laufer MK (2009) Resistance to antimalarial drugs: molecular, pharmacologic, and clinical considerations. Pediatr Res 65(5 Pt 2):64R–70R

    Article  Google Scholar 

  8. Lee SJ, Seo E, Cho Y (2013) Proposal for a new therapy for drug-resistant malaria using plasmodium synthetic lethality inference. Int J Parasitol Drugs Drug Resist 3:119–128

    Article  Google Scholar 

  9. Murphy SC, Harrison T, Hamm HE, Lomasney JW, Mohandas N, Haldar K (2006) Erythrocyte G protein as a novel target for malarial chemotherapy. PLoS Med 3(12):e528

    Article  Google Scholar 

  10. Gardiner DL, Skinner-Adams TS, Brown CL, Andrews KT, Stack CM, McCarthy JS, Dalton JP, Trenholme KR (2009) Plasmodium falciparum: new molecular targets with potential for antimalarial drug development. Expert Rev Anti-Infect Ther 7(9):1087–1098

    Article  CAS  Google Scholar 

  11. Lucet IS, Tobin A, Drewry D, Wilks AF, Doerig C (2012) Plasmodium kinases as targets for new-generation antimalarials. Future Med Chem 4(18):2295–2310

    Article  CAS  Google Scholar 

  12. Jin H, Xu Z, Cui K, Zhang T, Lu W, Huang J (2014) Dietary flavonoids fisetin and myricetin: dual inhibitors of Plasmodium falciparum falcipain-2 and plasmepsin II. Fitoterapia 94:55–61

    Article  CAS  Google Scholar 

  13. Jani D, Nagarkatti R, Beatty W, Angel R, Slebodnick C et al (2008) HDP—A novel heme detoxification protein from the malaria parasite. PLoS Pathog 4(4):e1000053

    Article  Google Scholar 

  14. Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, Malhotra P (2013) Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci U S A 110(14):5392–5397

    Article  CAS  Google Scholar 

  15. Pandey KC, Barkan DT, Sali A, Rosenthal PJ (2009) Regulatory elements within the prodomain of falcipain-2, a cysteine protease of the malaria parasite Plasmodium falciparum. PLoS ONE 4(5):e5694

    Article  Google Scholar 

  16. Pandey KC, Wang SX, Sijwali PS, Lau AL, McKerrow JH, Rosenthal PJ (2005) The Plasmodium falciparum cysteine protease falcipain-2 captures its substrate, hemoglobin, via a unique motif. Proc Natl Acad Sci U S A 102(26):9138–9143

    Article  CAS  Google Scholar 

  17. Soni S, Dhawan S, Rosen KM, Chafel M, Chishti AH, Hanspal M (2005) Characterization of events preceding the release of malaria parasite from the host red blood cell. Blood Cells Mol Dis 35(2):201–211

    Article  CAS  Google Scholar 

  18. Domínguez JN, León C, Rodrigues J, Gamboa de Domínguez N, Gut J, Rosenthal PJ (2005) Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J Med Chem 48:3654–3658

    Article  Google Scholar 

  19. Marco M, Coterón JM (2012) Falcipain inhibition as a promising antimalarial target. Curr Top Med Chem 12(5):408–444

    CAS  Google Scholar 

  20. Ettari R, Bova F, Zappalà M, Grasso S, Micale N (2010) Falcipain-2 inhibitors. Med Res Rev 30(1):136–167

    CAS  Google Scholar 

  21. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418–425

    CAS  Google Scholar 

  22. Lehane AM, Saliba KJ (2008) Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite. BMC Res Notes 1:26

    Article  Google Scholar 

  23. Hoorn RA, Overkleeft HS, Bogyo M, Kaiser M et al (2012) The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Chem Biol 19(12):1546–1555

    Article  Google Scholar 

  24. Linington RG, Clark BR, Trimble EE, Almanza A, Ureña LD, Kyle DE, Gerwick WH (2009) Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J Nat Prod 72(1):14–17

    Article  CAS  Google Scholar 

  25. Hogg T, Nagarajan K, Herzberg S, Chen L, Shen X, Jiang H, Wecke M, Blohmke C, Hilgenfeld R, Schmidt CL (2006) Structural and functional characterization of falcipain-2, a hemoglobinase from the malarial parasite Plasmodium falciparum. J Biol Chem 281(35):25425–25437

    Article  CAS  Google Scholar 

  26. Lee HS, Zhang Y (2012) BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures. Proteins 80(1):93–110

    Article  CAS  Google Scholar 

  27. Molecular Operating Environment (MOE), 2012.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 201

  28. Dyer KM, Perkyns JS, Stell G, Pettitt BM (2009) Site-renormalized molecular fluid theory: on the utility of a two-site model of water. Mol Phys 107:423–431

    Article  CAS  Google Scholar 

  29. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  30. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22(11):1205–1218

    Article  CAS  Google Scholar 

  31. Skeel RD (1993) Variable step size destabilizes the Stömer/leapfrog/Verlet method. BIT Numer Math 33:172–175

    Article  Google Scholar 

  32. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  33. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  34. Lennard-Jones JE (1924) On the determination of molecular fields. Proc R Soc Lond A 106(738):463–477

    Article  Google Scholar 

  35. Darden T, Perera L, Li L, Pedersen L (1999) New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure 7:R55–R60

    Article  CAS  Google Scholar 

  36. Páll S, Hess B (2013) A flexible algorithm for calculating pair interactions on SIMD architectures. Comput Phys Commun 184:2641–2650

    Article  Google Scholar 

  37. Fogolari F, Brigo A, Molinari H (2003) Protocol for MM/PBSA molecular dynamics simulations of proteins. Biophys J 85(1):159–166

    Article  CAS  Google Scholar 

  38. Kumari R, Kumar R, Open Source Drug Discovery Consortium, Lynn A (2014) g_mmpbsa-A GROMACS Tool for High-Throughput MM-PBSA Calculations. J Chem Inf Model. 2014. [Epub ahead of print]

  39. Wolfram Research, Inc. (2013) MATHEMATICA, Version 9.0, Champaign, IL

  40. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC

  41. Sinnokrot MO, Sherrill CD (2006) High-accuracy quantum mechanical studies of pi–pi interactions in benzene dimers. J Phys Chem A 110(37):10656–10668

    CAS  Google Scholar 

  42. Ringer AL, Sinnokrot MO, Lively RP, Sherrill CD (2006) The effect of multiple substituents on sandwich and T-shaped pi–pi interactions. Chem Eur J 12(14):38218

    Article  Google Scholar 

  43. Buller AR, Townsend CA (2013) Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad. Proc Natl Acad Sci U S A 110(8):E653–E661

    Article  CAS  Google Scholar 

  44. Krishtalik LI (2000) The mechanism of the proton transfer: an outline. Biochim Biophys Acta 1458(1):6–27

    Article  CAS  Google Scholar 

  45. Quesne MG, Ward RA, de Visser SP (2013) Cysteine protease inhibition by nitrile-based inhibitors: a computational study. Front Chem 1:39

    Article  Google Scholar 

  46. Brinen LS (2009) Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J Med Chem 52(3):852–857

    Article  Google Scholar 

  47. Omotuyi O, Hamada T (2014) Dynamical footprint of falcipain-2 catalytic triad in hemoglobin-β bound state. J Biomol Struct Dyn 19:1–10

    Article  Google Scholar 

  48. Shah F, Gut J, Legac J, Shivakumar D, Sherman W, Rosenthal PJ, Avery MA (2012) Computer-aided drug design of falcipain inhibitors: virtual screening, structure-activity relationships, hydration site thermodynamics, and reactivity analysis. J Chem Inf Model 52(3):696–710

    Article  CAS  Google Scholar 

  49. Shah F, Mukherjee P, Gut J, Legac J, Rosenthal PJ, Tekwani BL, Avery MA (2011) Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. J Chem Inf Model 51(4):852–864

    Article  CAS  Google Scholar 

  50. Sundararaj S, Singh D, Saxena AK, Vashisht K, Sijwali PS, Dixit R, Pandey KC (2012) The ionic and hydrophobic interactions are required for the auto activation of cysteine proteases of Plasmodium falciparum. PLoS ONE 7(10):e47227

    Article  CAS  Google Scholar 

  51. Kerr ID, Lee JH, Pandey KC, Harrison A, Sajid M, Rosenthal PJ, Brinen LS (2009) Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. J Med Chem 52(3):852–857

    Article  CAS  Google Scholar 

  52. Hansen G, Heitmann A, Witt T, Li H, Jiang H, Shen X, Heussler VT, Rennenberg A, Hilgenfeld R (2011) Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in plasmodium. Structure 19(7):919–929

    Article  CAS  Google Scholar 

  53. Wang SX, Pandey KC, Scharfstein J, Whisstock J, Huang RK, Jacobelli J, Fletterick RJ, Rosenthal PJ, Abrahamson M, Brinen LS, Rossi A, Sali A, McKerrow JH (2007) The structure of chagasin in complex with a cysteine protease clarifies the binding mode and evolution of an inhibitor family. Structure 15(5):535–543

    Article  CAS  Google Scholar 

  54. Zhang W, Huang J, Shan L, Li H, Wang L, Zhang S, Lu W, Su J, Chen TA (2012) method for treatment of malaria including administering to a patient in need thereof a flavonoid glycoside compound. US Patent Application No. US 2012/0295859 A1

  55. Conroy T, Guo JT, Hunt NH, Payne RJ (2010) Total synthesis and antimalarial activity of symplostatin 4. Org Lett 12(23):5576–5579

    Article  CAS  Google Scholar 

  56. Conroy T, Guo JT, Linington RG, Hunt NH, Payne RJ (2011) Total synthesis, stereochemical assignment, and antimalarial activity of gallinamide A. Chemistry 17(48):13544–13552

    Article  CAS  Google Scholar 

  57. Omotuyi IO, Oluyemi KA, Omofoma CO, Josiah SJ, Adesanya OA, Saalu LC (2006) Cyfluthrin induced hepatotoxicity in rats. Afr J Biotechnol 5(20):1909–1912

    CAS  Google Scholar 

  58. Schleier JJ, Peterson RK (2012) The joint toxicity of type I, II, and nonester pyrethroid insecticides. J Econ Entomol 105(1):85–91

    Article  CAS  Google Scholar 

  59. Omotuyi IO, Nwangwu SC, Okugbo OT, Okoye OT, Ojieh GC, Wogu DM (2008) Hepatotoxic and hemolytic effects of acute exposure of rats to artesunate overdose. Afr J Biochem Res 2:107–110

    Google Scholar 

  60. Efferth T, Kaina B (2010) Toxicity of the antimalarial artemisinin and its derivatives. Crit Rev Toxicol 40(5):405–421

    Article  CAS  Google Scholar 

  61. Bero J, Frédérich M, Quetin-Leclercq J (2009) Antimalarial compounds isolated from plants used in traditional medicine. J Pharm Pharmacol 61(11):1401–1433

    Article  CAS  Google Scholar 

  62. Groeger AL, Freeman BA (2010) Signaling actions of electrophiles: anti-inflammatory therapeutic candidates. Mol Interv 10(1):39–50

    Article  CAS  Google Scholar 

  63. Zhang WH, Liu J, Xu G, Yuan Q, Sayre LM (2003) Model studies on protein side chain modification by 4-oxo-2-nonenal. Chem Res Toxicol 16:512–523

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaposi I. Omotuyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDB 303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omotuyi, O.I. Methyl-methoxylpyrrolinone and flavinium nucleus binding signatures on falcipain-2 active site. J Mol Model 20, 2386 (2014). https://doi.org/10.1007/s00894-014-2386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2386-2

Keywords

Navigation