Skip to main content
Log in

Unzipping of neuronal snare protein with steered molecular dynamics occurs in three steps

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Soluble NSF-attachment protein receptors (SNAREs) play a crucial role in membrane fusion. Neuronal SNAREs, a four-helix bundle, help synaptic vesicles fuse with plasma membranes. We applied constant velocity pulling forces in silico to C terminal of synaptobrevin, one of the helices in the bundle, to understand unzipping mechanism of neuronal SNAREs. We observed unzipping of snaptobrevin from the other helices in three steps: linker domain unzipping, C terminal unzipping and N terminal unzipping. Our results have good qualitative agreement with a recent optical tweezer experiment that observes this stepwise unzipping. Since we performed 14 different simulations for two large spring force constants, our results are robust and they reveal atomistic details of these distinct unzipping steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92(6):759–772

    Article  CAS  Google Scholar 

  2. Duman JG, Forte JG (2003) What is the role of SNARE proteins in membrane fusion? Am J Physiol Cell Physiol 285(2):C237–C249. doi:10.1152/Ajpcell.00091

    Article  CAS  Google Scholar 

  3. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 a resolution. Nature 395(6700):347–353. doi:10.1038/26412

    Article  CAS  Google Scholar 

  4. Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460(7254):525–528. doi:10.1038/nature08156

    CAS  Google Scholar 

  5. Ernst JA, Brunger AT (2003) High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex. J Biol Chem 278(10):8630–8636. doi:10.1074/jbc.M211889200

    Article  CAS  Google Scholar 

  6. Pobbati AV, Razeto A, Boddener M, Becker S, Fasshauer D (2004) Structural basis for the inhibitory role of tomosyn in exocytosis. J Biol Chem 279(45):47192–47200. doi:10.1074/Jbc.M408767200

    Article  CAS  Google Scholar 

  7. Bracher A, Kadlec J, Betz H, Weissenhorn W (2002) X-ray structure of a neuronal complexin-SNARE complex from squid. J Biol Chem 277(29):26517–26523. doi:10.1074/Jbc.M203460200

    Article  CAS  Google Scholar 

  8. McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Sollner TH, Rothman JE (2000) Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407(6801):153–159

    Article  CAS  Google Scholar 

  9. Shi L, Shen QT, Kiel A, Wang J, Wang HW, Melia TJ, Rothman JE, Pincet F (2012) SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Sci 335(6074):1355–1359. doi:10.1126/science.1214984

    Article  CAS  Google Scholar 

  10. Xu H, Wickner WT (2012) N-terminal domain of vacuolar SNARE Vam7p promotes trans-SNARE complex assembly. Proc Natl Acad Sci U S A 109(44):17936–17941. doi:10.1073/pnas.1216201109

    Article  CAS  Google Scholar 

  11. Ngatchou AN, Kisler K, Fang Q, Walter AM, Zhao Y, Bruns D, Sorensen JB, Lindau M (2010) Role of the synaptobrevin C terminus in fusion pore formation. Proc Natl Acad Sci U S A 107(43):18463–18468. doi:10.1073/pnas.1006727107

    Article  CAS  Google Scholar 

  12. Liu W, Parpura V (2009) Single molecule probing of SNARE proteins by atomic force microscopy. Ann N Y Acad Sci 1152:113–120. doi:10.1111/j.1749-6632.2008.03991.x

    Article  CAS  Google Scholar 

  13. Gao Y, Zorman S, Gundersen G, Xi Z, Ma L, Sirinakis G, Rothman JE, Zhang Y (2012) Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337(6100):1340–1343. doi:10.1126/science.1224492

    Article  CAS  Google Scholar 

  14. Abdulreda MH, Moy VT (2009) Investigation of SNARE-mediated membrane fusion mechanism using atomic force microscopy. Jpn J Appl Phys 48 (8) doi 10.1143/Jjap.48.08ja03

  15. Abdulreda MH, Bhalla A, Rico F, Berggren PO, Chapman ER, Moy VT (2009) Pulling force generated by interacting SNAREs facilitates membrane hemifusion. Integr Biol: Quant Biosci Nano macro 1(4):301–310. doi:10.1039/b900685k

    Article  CAS  Google Scholar 

  16. Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY (2013) Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat Commun 4. doi:10.1038/Ncomms2692

    Google Scholar 

  17. Knecht V, Marrink SJ (2007) Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys J 92(12):4254–4261. doi:10.1529/biophysj.106.103572

    Article  CAS  Google Scholar 

  18. Lindau M, Hall BA, Chetwynd A, Beckstein O, Sansom MS (2012) Coarse-grain simulations reveal movement of the synaptobrevin C-terminus in response to piconewton forces. Biophys J 103(5):959–969. doi:10.1016/j.bpj.2012.08.007

    Article  CAS  Google Scholar 

  19. Risselada HJ, Grubmuller H (2012) How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. Curr Opin Struct Biol 22(2):187–196. doi:10.1016/j.sbi.2012.01.007

    Article  CAS  Google Scholar 

  20. Bock LV, Hutchings B, Grubmuller H, Woodbury DJ (2010) Chemomechanical regulation of SNARE proteins studied with molecular dynamics simulations. Biophys J 99(4):1221–1230. doi:10.1016/J.Bpj.2010.06.019

    Article  CAS  Google Scholar 

  21. Ghahremanpour MM, Mehrnejad F, Moghaddam ME (2010) Structural studies of SNARE complex and its interaction with complexin by molecular dynamics simulation. Biopolymers 93(6):560–570. doi:10.1002/Bip.21397

    CAS  Google Scholar 

  22. Zheng W (2014) All-atom and coarse-grained simulations of the forced unfolding pathways of the SNARE complex. Proteins 82(7):1376–1386. doi:10.1002/prot.24505

    Article  CAS  Google Scholar 

  23. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11(2):224–230

    Article  CAS  Google Scholar 

  24. Grubmuller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin biotin rupture force. Sci 271(5251):997–999. doi:10.1126/Science.271.5251.997

    Article  CAS  Google Scholar 

  25. Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72(4):1568–1581

    Article  CAS  Google Scholar 

  26. Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75(2):662–671. doi:10.1016/S0006-3495(98)77556-3

    Article  CAS  Google Scholar 

  27. Gullingsrud JR, Braun R, Schulten K (1999) Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J Comput Phys 151(1):190–211. doi:10.1006/Jcph.1999.6218

    Article  CAS  Google Scholar 

  28. Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci USA 98(7):3658–3661. doi:10.1073/Pnas.071034098

    Article  CAS  Google Scholar 

  29. Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. J Chem Phys 119(6):3559–3566. doi:10.1063/1.1590311

    CAS  Google Scholar 

  30. Hummer G, Szabo A (2003) Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J 85(1):5–15

    Article  CAS  Google Scholar 

  31. Park S, Schulten K (2004) Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys 120(13):5946–5961. doi:10.1063/1.1651473

    CAS  Google Scholar 

  32. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. doi:10.1063/1.445869

    CAS  Google Scholar 

  33. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  34. Miyamoto S, Kollman PA (1992) Settle - an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13(8):952–962. doi:10.1002/Jcc.540130805

    Article  CAS  Google Scholar 

  35. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  CAS  Google Scholar 

  36. MacKerell AD, Jr., Banavali N, Foloppe N (2000) Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56 (4):257–265. doi:10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W

  37. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38

    Article  CAS  Google Scholar 

  38. Jarzynski C (1997) Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys Rev E 56(5):5018–5035. doi:10.1103/Physreve.56.5018

    Article  CAS  Google Scholar 

  39. Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78(14):2690–2693. doi:10.1103/Physrevlett.78.2690

    Article  CAS  Google Scholar 

  40. Fasshauer D, Sutton RB, Brunger AT, Jahn R (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci USA 95(26):15781–15786

    Article  CAS  Google Scholar 

  41. Xu T, Rammner B, Margittai M, Artalejo AR, Neher E, Jahn R (1999) Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99(7):713–722

    Article  CAS  Google Scholar 

  42. Hua SY, Charlton MP (1999) Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat Neurosci 2(12):1078–1083. doi:10.1038/16005

    Article  CAS  Google Scholar 

  43. Kyoung M, Srivastava A, Zhang Y, Diao J, Vrljic M, Grob P, Nogales E, Chu S, Brunger AT (2011) In vitro system capable of differentiating fast Ca2 + −triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc Natl Acad Sci U S A 108(29):E304–313. doi:10.1073/pnas.1107900108

    Article  CAS  Google Scholar 

  44. Scales SJ, Yoo BY, Scheller RH (2001) The ionic layer is required for efficient dissociation of the SNARE complex by alpha-SNAP and NSF. Proc Natl Acad Sci U S A 98(25):14262–14267

    Article  CAS  Google Scholar 

  45. Katz L, Brennwald P (2000) Testing the 3Q:1R “rule”: mutational analysis of the ionic “zero” layer in the yeast exocytic SNARE complex reveals no requirement for arginine. Mol Biol Cell 11(11):3849–3858

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The numerical calculations reported in this paper were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (Turkiye Bilimsel ve Teknik Arastirmalar Kurumu (Scientific and Technical Research Council of Turkey) - Ulusal Akademik Ag ve Bilgi Merkezi (National Academic Network and Information Center) (TUBITAK - ULAKBIM); Turk Ulusal e-Bilim e-Altyapisi (Turkish National electronic-Science electronic-Infrastructure) (TRUBA) Resources). We thank them for providing us computational resources for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tekpinar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekpinar, M., Zheng, W. Unzipping of neuronal snare protein with steered molecular dynamics occurs in three steps. J Mol Model 20, 2381 (2014). https://doi.org/10.1007/s00894-014-2381-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2381-7

Keywords

Navigation