Skip to main content

Advertisement

Log in

Insight into HIV-1 reverse transcriptase–aptamer interaction from molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus-1 reverse transcriptase (HIV-1 RT) is considered to be one of the key targets for antiviral drug therapy. The emergence of the aptamers as potential inhibitors against HIV-1 reverse transcriptase has attracted the attention of the scientific community because these macromolecules can effectively inhibit HIV-1 RT with between micromolar to picomolar concentrations. However, it is not clear how aptamers interact with HIV-1 RT. We have undertaken a molecular dynamics (MD) study in order to gain a keen insight into the conformational dynamics of HIV-1 RT on the formation of a complex with an aptamer or DNA substrate. We have therefore employed three separate models: apo HIV-1 RT, HIV-1 RT with a bound RNA aptamer, and HIV-1 RT with a bound DNA substrate. The results show that HIV-1 RT complex with an aptamer was more stable than that with DNA substrate. It was found that the aptamer interacted with HIV-1 RT in a fingers-and-thumb-closed conformation, at the bound at the nucleic acid substrate binding site. We identified key residues within the HIV-1 RT-aptamer complex in order to help design, develop, and test a new aptamer based on therapies in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Menendez-Arias L (2010) Molecular basis of human immunodeficiency virus drug resistance: an update. Antivir Res 85(1):210–231

    Article  CAS  Google Scholar 

  2. Jacobo-Molina A, Ding J, Nanni RG, Clark AD Jr, Lu X, Tantillo C, Williams RL, Kamer G, Ferris AL, Clark P et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0-Å resolution shows bent DNA. Proc Natl Acad Sci U S A 90(13):6320–6324

    Article  CAS  Google Scholar 

  3. Yazdanpanah Y, Sissoko D, Egger M, Mouton Y, Zwahlen M, Chene G (2004) Clinical efficacy of antiretroviral combination therapy based on protease inhibitors or non-nucleoside analogue reverse transcriptase inhibitors: indirect comparison of controlled trials. Brit Med J 328(7434):249–253

    Article  CAS  Google Scholar 

  4. Tuerk C, MacDougal S, Gold L (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A 89(15):6988–6992

    Article  CAS  Google Scholar 

  5. Burke DH, Scates L, Andrews K, Gold L (1996) Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J Mol Biol 264(4):650–666

    Article  CAS  Google Scholar 

  6. Schneider DJ, Feigon J, Hostomsky Z, Gold L (1995) High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry 34(29):9599–9610

    Article  CAS  Google Scholar 

  7. Chaloin L, Lehmann MJ, Sczakiel G, Restle T (2002) Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 30(18):4001–4008

    Article  CAS  Google Scholar 

  8. Held DM, Kissel JD, Thacker SJ, Michalowski D, Saran D, Ji JF, Hardy RW, Rossi JJ, Burke DH (2007) Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers. J Virol 81(10):5375–5384

    Article  CAS  Google Scholar 

  9. Joshi P, Prasad VR (2002) Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). J Virol 76(13):6545–6557

    Article  CAS  Google Scholar 

  10. Joshi PJ, North TW, Prasad VR (2005) Aptamers directed to HIV-1 reverse transcriptase display greater efficacy over small hairpin RNAs targeted to viral RNA in blocking HIV-1 replication. Mol Ther 11(5):677–686

    Article  CAS  Google Scholar 

  11. Jaeger J, Restle T, Steitz TA (1998) The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor. EMBO J 17(15):4535–4542

    Article  CAS  Google Scholar 

  12. Ditzler MA, Bose D, Shkriabai N, Marchand B, Sarafianos SG, Kvaratskhelia M, Burke DH (2011) Broad-spectrum aptamer inhibitors of HIV reverse transcriptase closely mimic natural substrates. Nucleic Acids Res 39(18):8237–8247

    Article  CAS  Google Scholar 

  13. Kensch O, Connolly BA, Steinhoff HJ, McGregor A, Goody RS, Restle T (2000) HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity. J Biol Chem 275(24):18271–18278

    Article  CAS  Google Scholar 

  14. Held DM, Kissel JD, Patterson JT, Nickens DG, Burke DH (2006) HIV-1 inactivation by nucleic acid aptamers. Front Biosci 11:89–112

    Article  CAS  Google Scholar 

  15. Kensch O, Restle T, Wohrl BM, Goody RS, Steinhoff HJ (2000) Temperature-dependent equilibrium between the open and closed conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling. J Mol Biol 301(4):1029–1039

    Article  CAS  Google Scholar 

  16. Bebenek K, Beard WA, Darden TA, Li L, Prasad R, Luton BA, Gorenstein DG, Wilson SH, Kunkel TA (1997) A minor groove binding track in reverse transcriptase. Nat Struct Biol 4(3):194–197

    Article  CAS  Google Scholar 

  17. Li L, Pedersen L, Beard W, Bebenek K, Wilson S, Kunkel T, Darden T (2000) A molecular dynamics model of HIV-1 reverse transcriptase complexed with DNA: comparison with experimental structures. Mole Model Ann 6(10–11):575–586

    Article  CAS  Google Scholar 

  18. Ivetac A, McCammon JA (2009) Elucidating the inhibition mechanism of HIV-1 non-nucleoside reverse transcriptase inhibitors through multicopy molecular dynamics simulations. J Mol Biol 388(3):644–658

    Article  CAS  Google Scholar 

  19. Hsiou Y, Ding J, Das K, Clark AD Jr, Hughes SH, Arnold E (1996) Structure of unliganded HIV-1 reverse transcriptase at 2.7-Å resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure 4(7):853–860

    Article  CAS  Google Scholar 

  20. Lansdon EB, Samuel D, Lagpacan L, Brendza KM, White KL, Hung M, Liu X, Boojamra CG, Mackman RL, Cihlar T, Ray AS, McGrath ME, Swaminathan S (2010) Visualizing the molecular interactions of a nucleotide analog, GS-9148, with HIV-1 reverse transcriptase-DNA complex. J Mol Biol 397(4):967–978

    Article  CAS  Google Scholar 

  21. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  Google Scholar 

  22. Bauman JD, Das K, Ho WC, Baweja M, Himmel DM, Clark AD Jr, Oren DA, Boyer PL, Hughes SH, Shatkin AJ, Arnold E (2008) Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res 36(15):5083–5092

    Article  CAS  Google Scholar 

  23. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  Google Scholar 

  24. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Protein Struct Funct Bioinform 65(3):712–725

    Article  CAS  Google Scholar 

  25. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    CAS  Google Scholar 

  26. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: Fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  27. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Article  CAS  Google Scholar 

  28. Sorin EJ, Pande VS (2005) Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys J 88(4):2472–2493

    Article  CAS  Google Scholar 

  29. DePaul AJ, Thompson EJ, Patel SS, Haldeman K, Sorin EJ (2010) Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucleic Acids Res 38(14):4856–4867

    Article  CAS  Google Scholar 

  30. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958

    CAS  Google Scholar 

  31. Yang L, Tan CH, Hsieh MJ, Wang J, Duan Y, Cieplak P, Caldwell J, Kollman PA, Luo R (2006) New-generation amber united-atom force field. J Phys Chem B 110(26):13166–13176

    CAS  Google Scholar 

  32. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    CAS  Google Scholar 

  33. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

    Google Scholar 

  34. Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50(5):1055–1076

    Article  Google Scholar 

  35. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

    Article  CAS  Google Scholar 

  36. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  37. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    CAS  Google Scholar 

  38. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    CAS  Google Scholar 

  39. van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2010) Gromacs User Manual version 4.5.4

  40. Amadei A, Linssen AB, Berendsen HJ (1993) Essential dynamics of proteins. Proteins 17(4):412–425

    Article  CAS  Google Scholar 

  41. Spiliotopoulos D, Spitaleri A, Musco G (2012) Exploring PHD Fingers and H3K4me0 Interactions with Molecular Dynamics Simulations and Binding Free Energy Calculations: AIRE-PHD1, a Comparative Study. PLoS One 7(10). doi:10.1371/journal.pone.0046902

  42. Kumari R, Kumar R, Lynn A (2014) g_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling. doi:10.1021/ci500020m

  43. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  Google Scholar 

  44. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98(18):10037–10041

    Article  CAS  Google Scholar 

  45. Turner PJ (2008) Grace. Center for Coastal and Land-Margin Research Oregon Graduate Institute of Science and Technology. http://plasma-gate.weizmann.ac.il/Grace/.

  46. DeLano WL (2010) The PyMOL Molecular Graphics System, Version 1.3r1. Schrödinger, LLC

  47. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38

    Article  CAS  Google Scholar 

  48. Madrid M, Lukin JA, Madura JD, Ding JP, Arnold E (2001) Molecular dynamics of HIV-1 reverse transcriptase indicates increased flexibility upon DNA binding. Protein-Struct Funct Genet 45(3):176–182

    Article  CAS  Google Scholar 

  49. Wright DW, Hall BA, Kellam P, Coveney PV (2012) Global Conformational Dynamics of HIV-1 Reverse Transcriptase Bound to Non-Nucleoside Inhibitors. Biol (Basel) 1(2):222–244. doi:10.3390/biology1020222

Download references

Acknowledgments

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Faculty of Science at Kasetsart University, Kasersart University Research and Development Institute. We wish to express our gratitude for the use of high-performance computer clusters from The National Center for Genetic Engineering and Biotechnology (BIOTEC) and the National Science and Technology Development Agency (NSTDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiattawee Choowongkomon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aeksiri, N., Songtawee, N., Gleeson, M.P. et al. Insight into HIV-1 reverse transcriptase–aptamer interaction from molecular dynamics simulations. J Mol Model 20, 2380 (2014). https://doi.org/10.1007/s00894-014-2380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2380-8

Keywords

Navigation