Skip to main content
Log in

Theoretical study of adsorption of nitrogen-containing environmental contaminants on kaolinite surfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption of nitrogen-containing compounds (NCCs) including 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-nitro-1,2,4-triazol-5-one (NTO) on kaolinite surfaces was investigated. The M06-2X and M06-2X-D3 density functionals were applied with the cluster approximation. Several different positions of NCCs relative to the adsorption sites of kaolinite were examined, including NCCs in perpendicular and parallel orientation toward both surface models of kaolinite. The binding between the target molecules and kaolinite surfaces was analyzed and bond energies were calculated applying the atoms in molecules (AIM) method. All NCCs were found to prefer a parallel orientation toward both kaolinite surfaces, and were bound more strongly to the octahedral than to the tetrahedral site. TNT exhibited the strongest interaction with the octahedral surface and DNAN with the tetrahedral surface of kaolinite. Hydrogen bonding was shown to be the dominant non-covalent interaction for NCCs interacting with the octahedral surface of kaolinite with a small stabilizing effect of dispersion interactions. In the case of adsorption on the tetrahedral surface, kaolonite–NCC binding was shown to be governed by the balance between hydrogen bonds and dispersion forces. The presence of water as a solvent leads to a significant decrease in the adsorption strength for all studied NCCs interacting with both kaolinite surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nesse WD (1999) Introduction to mineralogy. Oxford University Press, New York

    Google Scholar 

  2. Newman ACD (1987) Chemistry of clays and clay minerals. Longman Scientific & Technical, London

    Google Scholar 

  3. Bailey SW (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London

    Google Scholar 

  4. Hartter DR (1985) The use and importance of nitroaromatic chemicals in the chemical industry. In: Rickert DE (ed) In toxicity of nitroaromatic compounds. Hemisphere, Washington, DC, pp 1–13

    Google Scholar 

  5. Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In: Hutzinger O (ed) The handbook of environmental chemistry anthropogenic compounds, vol 3, part G. Springer, Berlin, pp 195–237

  6. Haderlein SB, Schwarzenbach RP (1995) Environmental processes influencing the rate of abiotic reduction of nitroaromatic compounds in the subsurface. In: Spain J (ed) In biodegradation of nitroaromatic compounds. Plenum, New York, pp 199–225

    Chapter  Google Scholar 

  7. Haderlein SB, Schwarzenbach RP (1993) Environ Sci Technol 27:316–326

    Article  CAS  Google Scholar 

  8. Weissmahr KW, Haderlein SB, Schwarzenbach RP, Hany E, Nüesch R (1997) Environ Sci Technol 31:240–247

    Article  CAS  Google Scholar 

  9. Haderlein SB, Weissmahr KW, Schwarzenbach RP (1996) Environ Sci Technol 30:612–622

    Article  CAS  Google Scholar 

  10. Weissmahr KW, Haderlein SB, Schwarzenbach RP (1998) Soil Sci Soc Am J 62:369–378

    Article  CAS  Google Scholar 

  11. Weissmahr KW, Hildenbrand M, Schwarzenbach RP, Haderlein SB (1999) Environ Sci Technol 33:2593–2600

    Article  CAS  Google Scholar 

  12. Boyd SA, Sheng G, Teppen BJ, Johnston CT (2001) Environ Sci Technol 35:4227–4234

    Article  CAS  Google Scholar 

  13. Johnston CT, de Oliveira MF, Teppen BJ, Sheng G, Boyd SA (2001) Environ Sci Technol 35:4767–4772

    Article  CAS  Google Scholar 

  14. Takenawa R, Komori Y, Hayashi S, Kawamata J, Kuroda K (2001) Chem Mater 13:3741–3746

    Article  CAS  Google Scholar 

  15. Michalkova A, Szymczak JJ, Leszczynski J (2005) Struct Chem 16:325–337

    Article  CAS  Google Scholar 

  16. Gorb L, Gu J, Leszczynska D, Leszczynski J (2000) Phys Chem Chem Phys 2:5007–5012

    Article  CAS  Google Scholar 

  17. Pelmenschikov A, Leszczynski J (1999) J Phys Chem B 103:6886–6890

    CAS  Google Scholar 

  18. Gorb L, Lutchyn R, Zub Y, Leszczynska D, Leszczynski J (2006) J Mol Struct THEOCHEM 766:151–157

    Article  CAS  Google Scholar 

  19. Wang X, Qian P, Song K, Zhang C, Dong J (2013) Comput Theor Chem 1025:16–23

    Article  CAS  Google Scholar 

  20. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  21. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Google Scholar 

  22. Zhao Y, Truhlar DG (2010) The Minnesota density functionals and their applications to problems in mineralogy and geochemistry. In: Wentzcovitch R, Stixrude L (eds) Theoretical and computational methods in mineral physics: geophysical applications, vol 71. Mineralogical Society of America, Chantilly, VA,pp 19

  23. Valero R, Gomes JRB, Truhlar DG, Illas F (2008) J Chem Phys 129:124710 (1–7)

  24. Bermudez VM (2009) J Phys Chem C 113:1917–1930

    Article  CAS  Google Scholar 

  25. Scott AM, Dawley MM, Orlando TM, Hill FC, Leszczynski J (2012) J Phys Chem C 116:23992–24005

    Article  Google Scholar 

  26. Boekfa B, Choomwattana S, Khongpracha P, Limtrakul J (2009) Langmuir 25:12990–12999

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1–13

    CAS  Google Scholar 

  28. El-Sayed K, Heiba ZK, Abdel-Rahman AM (1990) Cryst Res Technol 25:305–312

    Article  CAS  Google Scholar 

  29. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc. Wallingford, CT

  31. Boys SF, Bernardi FD (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  32. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  33. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    CAS  Google Scholar 

  34. Popelier PLA (1998) J Phys Chem A 102:1873–1878

    CAS  Google Scholar 

  35. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170–173

    CAS  Google Scholar 

  36. Klamt A, Schuurmann G (1993) J Chem Soc-Perkin Trans 2:799–805

    Google Scholar 

  37. Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2004) Soil Sci 169:44–54

    Article  CAS  Google Scholar 

  38. Sainz-Díaz CI, Francisco-Márquez M, Vivier-Bunge A (2010) Theor Chem Acc 125:83–95

    Article  Google Scholar 

  39. Førland GM (2001) J Colloid Interface Sci 242:477–479

    Article  Google Scholar 

  40. Johnson ER, Otero-de-la-Roza A (2012) J Chem Theory Comput 8:5124–5131

    CAS  Google Scholar 

  41. Castro EAS, Martins JBL (2005) Int J Quantum Chem 103:550–556

    Article  CAS  Google Scholar 

  42. Castro EAS, Gargano R, Martins JBL (2012) Int J Quantum Chem 112:2828–2831

    Article  CAS  Google Scholar 

  43. Michalkova A, Robinson TL, Leszczynski J (2011) Phys Chem Chem Phys 13:7862–7881

    Article  CAS  Google Scholar 

  44. Sedlak R, Janowski T, Pitoňák M, Řezáč J, Pulay P, Hobza P (2013) J Chem Theory Comput 9:3364–337

    CAS  Google Scholar 

  45. Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV (2012) J Chem Theory Comput 8:2835–2843

    CAS  Google Scholar 

  46. Goerigk L, Kruse H, Grimme S (2011) Chem Phys Chem 12:3421–3433

    CAS  Google Scholar 

  47. Tsendra O, Scott AM, Gorb L, Boese AD, Hill FC, Ilchenko MM, Leszczynska D, Leszczynski J (2014) J Phys Chem C 118(6):3023–3034

  48. Zhanpeisov NU, Adams JW, Larson SL, Weiss CA Jr, Zhanpeisova BZ, Leszczynska D, Leszczynski J (1999) Struct Chem 10(4):285–294

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was facilitated by support from the High Performance Computing Major Shared Resource Center at the Engineer Research and Development Center (ERDC, Vicksburg, MS). The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the US Government. Results in this study were funded and obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the US Army ERDC. Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Michalkova Scott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, A.M., Burns, E.A. & Hill, F.C. Theoretical study of adsorption of nitrogen-containing environmental contaminants on kaolinite surfaces. J Mol Model 20, 2373 (2014). https://doi.org/10.1007/s00894-014-2373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2373-7

Keywords

Navigation