Skip to main content
Log in

The CH3PH2 and CH3PH isomers: isomerization, hydrogen release, thermodynamic, and spectroscopy properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study was performed a quantum chemical investigation of the methylphosphine molecule and its radical, which may show potential implications in interstellar processes, and may be crucial atmospheric tracer gasses in the atmosphere of Giant planets. The analyses were performed with the density functional theory and coupled cluster methods. The anharmonic vibrational modes were predicted for all the isomers. The atomic charge distribution was analyzed with different methodologies and some methods fail to establish the correct sign for phosphorous atom charges. The CH2PH2/CH3PH and CHPH3/CH3PH energy gap is 16.45–17.43 and 67.05–69.02 kcal mol−1, respectively. The CH2PH3/CH3PH2 energy difference ranges from 44.62 to 50.05 kcal mol−1. The ionization energy predicted with the W1BD method for CH3PH and CH3PH2 are 8.73 and 9.01 eV, respectively. The heat of formation at 298 K for each molecule were calculated in kcal mol−1: CH3PH (24.16–25.27), CH2PH2 (41.20–42.47), CHPH3 (92.50–94.23), CH3PH2 (−4.73–2.83) and CH2PH3 (40.03–42.55). The rotational energy barriers for CH3PH2 and CH2PH3 are 1.65 and 2.81 kcal mol−1, respectively. The CHPH3 → CH2PH2 unimolecular arrangement presents a barrier energy of 29.89 kcal mol−1, whereas CH3PH → CH2PH2 is accessible overcoming a barrier of 42.42 kcal mol−1. The H2-release routes for CH2PH2 from carbon and phosphorous atoms show a barrier of 98.19 and 46.67 kcal mol−1, respectively. For the CH3PH2 → CH2PH3 isomerization, an energy barrier of 94.00 kcal mol−1 was predicted, while for the H2-release pathway for CH3PH2 it is necessary to pass a potential energy barrier of 97.56 kcal mol−1.

The isomerization and H2-release pathways of CH3PH2.ᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Milam SN, Halfen DT, Tenenbaum ED, Apponi AJ, Woolf NJ, Ziurys LM (2008) Astrophys J 684:618

    Article  CAS  Google Scholar 

  2. Agundez M, Cernicharo J, Guelin M (2007) Astrophys J 662:L91

    Article  CAS  Google Scholar 

  3. Halfen DT, Clouthier DJ, Ziurys LM (2008) Astrophys J 677:L101

    Article  CAS  Google Scholar 

  4. Guo Y, Gu X, Zhang F, Sun BJ, Tsai MF, Chang AH, Kaiser RI (2007) J Phys Chem A 111:3241

    Article  CAS  Google Scholar 

  5. Lattanzi V, Thorwirth S, Halfen DT, Mück LA, Ziurys LM, Thaddeus P, Gauss J, McCarthy MC (2010) Angew Chem Int Ed 49:5661

    Article  CAS  Google Scholar 

  6. Halfen DT, Clouthier DJ, Ziurys LM, Lattanzi V, McCarthy MC, Thaddeus P, Thorwirth S (2011) J Chem Phys 134:14302

    Google Scholar 

  7. Viana RB, Pimentel AS (2007) J Chem Phys 127:204306

    Google Scholar 

  8. Pimentel AS, Viana RB (2007) Chem Phys 334:85

    CAS  Google Scholar 

  9. Viana RB, Santos PS, Macedo LGM, Pimentel AS (2009) Chem Phys 363:49

    CAS  Google Scholar 

  10. Rey-Villaverde R, Alvarez-Barcia S, Flores JR (2012) J Chem Phys 137:14316

    CAS  Google Scholar 

  11. Rey-Villaverde R, Cybulski H, Flores JR, Fernandez B (2013) J Comput Chem 34:2020

    Article  CAS  Google Scholar 

  12. Viana RB, Guimaraes AR, de Souza AR, da Silva ABF (2014) J Mol Model 20:2074

    Article  Google Scholar 

  13. Kaye JA, Strobel DF (1983) Icarus 55:399

    Article  CAS  Google Scholar 

  14. Kaye JA, Strobel DF (1983) Icarus 59:314

    Article  Google Scholar 

  15. Bossard AR, Kamga R, Raulin F (1986) Icarus 67:305

    Article  CAS  Google Scholar 

  16. Kojima T, Breig EL, Linn CC (1961) J Chem Phys 35:2139

    CAS  Google Scholar 

  17. Nelson R (1963) J Chem Phys 32:2382

    Google Scholar 

  18. Moritz AG (1966) Spectrochim Acta 22:1015

    CAS  Google Scholar 

  19. Lannon JA, Nixon ER (1967) Spectrochim Acta 23:2713

    Article  CAS  Google Scholar 

  20. McKean DC, McQuillan GP (1978) J Mol Struct 49:275

    Article  CAS  Google Scholar 

  21. Katsyuba SA, Pominov IS (1982) J App Spectrosc 36:553

    Article  Google Scholar 

  22. Kim H-W, Zeroka D (2001) J Mol Struct Theochem 571:59

    Article  CAS  Google Scholar 

  23. Todebush PM, Liang G, Bowen JP (2002) Chirality 14:220

    Article  CAS  Google Scholar 

  24. Kim HW, Zeroka D (2008) Int J Quantum Chem 108:974

    Article  CAS  Google Scholar 

  25. Kim HW, Chechla AA, Kim B (2007) J Mol Struct Theochem 802:105

    Article  CAS  Google Scholar 

  26. Noble-Eddy R, Masters SL, Rankin DW, Wann DA, Khater B, Guillemin JC (2008) Dalton Trans 7:5041

    Article  Google Scholar 

  27. Das U, Raghavachari K (2009) J Comput Chem 30:1872

    Article  CAS  Google Scholar 

  28. Del Bene JE, Elguero J, Alkorta I (2007) J Phys Chem A 111:3416

    Google Scholar 

  29. Yates BF, Bouma WJ, Radom L (1987) J Am Chem Soc 109:2250

    Article  CAS  Google Scholar 

  30. Dorofeeva OV, Moiseeva NF (2006) J Phys Chem A 110:8925

    CAS  Google Scholar 

  31. Hemelsoet K, Van Durme F, Van Speybroeck V, Reyniers MF, Waroquier M (2010) J Phys Chem A 114:2864

    CAS  Google Scholar 

  32. Matus MH, Nguyen MT, Dixon DA (2007) J Phys Chem A 111:1726

    CAS  Google Scholar 

  33. Morris M, Chan B, Radom L (2012) J Phys Chem A 116:12381

    CAS  Google Scholar 

  34. Yang YL, Meng LP, Zheng SJ (2005) Chin J Chem 23:627

    Article  Google Scholar 

  35. Zabardasti A, Kakanejadifard A, Ghasemian M, Solimannejad M (2012) Struct Chem 23:1155

    Article  CAS  Google Scholar 

  36. Calhorda MJ, Krapp A, Frenking G (2007) J Phys Chem A 111:2859

    CAS  Google Scholar 

  37. Xie HB, Ding YH, Sun CC (2006) J Comput Chem 27:545–551

    Article  CAS  Google Scholar 

  38. Xie HB, Ding YH, Sun CC (2006) J Mol Struct Theochem 776:105

    Article  CAS  Google Scholar 

  39. Xie HB, Ding YH (2006) J Theor Comput Chem 6:531

    Google Scholar 

  40. Wang ZX, Huang MB (1999) J Phys Chem A 103:265

    CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision B.02. Gaussian, Inc, Wallingford

  42. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  43. Adamo C, Barone V (1999) J Chem Phys 110:6158

    CAS  Google Scholar 

  44. Dunning TH Jr (1989) J Chem Phys 90:1007

    CAS  Google Scholar 

  45. Peterson KA, Dunning TH Jr (2002) J Chem Phys 117:10548

    CAS  Google Scholar 

  46. Hratchian HP, Schlegel HB (2004) J Chem Phys 120:9918

    CAS  Google Scholar 

  47. Hratchian HP, Schlegel HB (2005) J Chem Theory Comput 1:61

    CAS  Google Scholar 

  48. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    CAS  Google Scholar 

  49. Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243

    CAS  Google Scholar 

  50. Barnes EC, Petersson GA, Montgomery JA Jr, Frisch MJ, Martin JML (2009) J Chem Theory Comput 5:2687

    CAS  Google Scholar 

  51. Martin JML, de Oliveira G (1999) J Chem Phys 111:1843

    CAS  Google Scholar 

  52. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108

    Google Scholar 

  53. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 127:124105

    Google Scholar 

  54. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    CAS  Google Scholar 

  55. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063

    CAS  Google Scholar 

  56. Chase MW Jr (1998) J Phys Chem Ref Data 9:1

    Google Scholar 

  57. Moore CE (1999) Atomic Energy Levels, Natl. Bur. Stand. U.S. Circ. No. 467 U.S. GPO, Washington, D.C.

  58. Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304

    CAS  Google Scholar 

  59. Wiberg KB (1968) Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  60. Glendening ED, Weinhold F (1998) J Comp Chem 19:593

    Article  CAS  Google Scholar 

  61. Glendening ED, Weinhold F (1998) J Comp Chem 19:610

    Article  CAS  Google Scholar 

  62. Glendening ED, Weinhold F (1998) J Comp Chem 19:628

    Article  CAS  Google Scholar 

  63. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    CAS  Google Scholar 

  64. Reed AE, Schleyer PVR (1988) Inorg Chem 27:3969

    Article  CAS  Google Scholar 

  65. Mayer I, Salvador P (2004) Chem Phys Lett 383:368

    CAS  Google Scholar 

  66. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  67. Chirlian LE, Francl MM (1987) J Comp Chem 8:894

    Article  CAS  Google Scholar 

  68. Breneman CM, Wiberg KB (1990) J Comp Chem 11:361

    Article  CAS  Google Scholar 

  69. Singh UC, Kollman PA (1984) J Comp Chem 5:129

    Article  CAS  Google Scholar 

  70. Besler BH, Merz KM Jr, Kollman PA (1990) J Comp Chem 11:431

    Article  CAS  Google Scholar 

  71. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2013) NBO 6.0, Theoretical chemistry institute; University of Wisconsin, Madison, WI

  72. AIMAll (Version 11.12.19), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2011 (aim.tkgristmill.com)

  73. Lu T, Chen F (2012) J Comp Chem 33:580

    Article  Google Scholar 

  74. Barone V (2004) J Chem Phys 120:3059

    CAS  Google Scholar 

  75. Jensen F (2006) Introduction to Computational Chemistry. 2nd edn. Wiley, New York

  76. Bader RFW, Slee TS, Cremer D, Kraka E (1983) J Am Chem Soc 105:5061

    Article  CAS  Google Scholar 

  77. Lucas MF, Michelini MC, Russo N, Sicilia E (2008) J Chem Theory Comput 4:397

    CAS  Google Scholar 

  78. Marino T, Michelini MC, Russo N, Sicilia E, Toscano M (2012) Theor Chem Acc 131:1141

    Article  Google Scholar 

  79. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627

    Article  Google Scholar 

  80. Hemelsoet K, Van Durme F, Van Speybroeck V, Reyniers MF, Waroquier M (2010) J Phys Chem A 114:2864

    CAS  Google Scholar 

  81. Luo YR, Benson SW (1989) J Am Chem Soc 111:2480

    Article  CAS  Google Scholar 

  82. Hodges RV, McDonnell TJ, Beauchamp JL (1980) J Am Chem Soc 102:1327

    Article  CAS  Google Scholar 

  83. Staley RH, Beauchamp JL (1974) J Am Chem Soc 96:6252

    Article  CAS  Google Scholar 

  84. Wada Y, Kiser RW (1964) J Phys Chem 68:2290

    CAS  Google Scholar 

  85. Baek SJ, Choi KW, Choi YS, Kim SK (2002) J Chem Phys 117:1057

    Google Scholar 

  86. Baek SJ, Choi KW, Choi YS, Kim SK (2003) J Chem Phys 118:11026

    CAS  Google Scholar 

  87. Bhatta RS, Gao A, Perry DS (2010) J Mol Struct Theochem 941:22

    Article  CAS  Google Scholar 

  88. Ducati LC, Custodio R, Rittner R (2010) Int J Quantum Chem 110:2006

    CAS  Google Scholar 

  89. Nascimento J, Pelegrini M, Ferrao LFA, Roberto-Neto O, Machado FBC (2011) J Braz Chem Soc 22:968

    Article  CAS  Google Scholar 

  90. Kojima T, Breig EL, Lin CC (1961) J Chem Phys 35:2139

    CAS  Google Scholar 

  91. Gordon MS, Neubauer L (1974) J Am Chem Soc 96:5690

    Article  CAS  Google Scholar 

  92. Absar I, Van Wazer JR (1971) J Chem Soc D: Chem Commun 12:611

    Article  Google Scholar 

  93. Balucani N, Bergeat A, Cartechini L, Volpi GG, Casavecchia P, Skouteris D, Rosi M (2009) J Phys Chem A 113:11138

    CAS  Google Scholar 

  94. Ouk CM, Zvereva-Loete N, Scribano Y (2012) J Comput Chem 33:2211

    Article  CAS  Google Scholar 

  95. Blitz MA, Talbi D, Seakins PW, Smith IW (2012) J Phys Chem A 116:5877

    CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by CNPq. The authors are grateful to the NCC/GridUNESP and CENAPAD/SP for the provision of computational facilities. The authors also thank FAPESP for the research fellowship (12/19175-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rommel B. Viana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, R.B., da Silva, A.B.F. The CH3PH2 and CH3PH isomers: isomerization, hydrogen release, thermodynamic, and spectroscopy properties. J Mol Model 20, 2372 (2014). https://doi.org/10.1007/s00894-014-2372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2372-8

Keywords

Navigation