Skip to main content
Log in

Molecular dynamics studies on the influences of a gradient electric field on the water chain in a peptide nanotube

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structure and transportation characteristics of the water chain inside a 8 × cyclo-(WL)4 peptide nanotube (PNT) were simulated under a gradient electric (GE) field. The gradient was defined by the ratio of a constant (E a) and the z-directional length (L z) of the simulation box. E a varies from 0.0 to 0.9 V nm−1. As the gradient increases, the probabilities of finding two water molecules in an α-plane zone and three in a midplane region increase. To accommodate more water molecules, the axial array of channel water molecules becomes more compact. Meanwhile, the H-bonded network between the channel water is greatly intensified when E a increases from 0.3 to 0.9 V nm−1. Nevertheless, the proportion of strong H-bonds does not increase significantly following the formation of a more compact axial array of water molecules. When E a reaches 0.9 V nm−1, the water molecule in an α-plane zone may be dragged by its neighboring water molecules into the midplane region, resulting in a significant deviation from the channel axis. With the augment of the gradient, the dipoles of channel water are gradually oriented along the tube axis in the sequence from gap 1 to 7, namely along the direction of the electric field. Nevertheless, even when E a reaches 0.9 V nm−1, the dipole orientation of the channel water is not complete, and dipole flips still occur in gap 7. Under a GE field, the rightward and leftward hopping rates of channel water are no longer equal to each other, i.e., channel water performs an asymmetric transportation.

MD studies on the influences of a gradient electric field on water chain in a peptide nanotube

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Denker BM, Smith BL, Kuhajda FP (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263(30):15634–15642

    CAS  Google Scholar 

  2. Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88(24):11110–11114

    Article  CAS  Google Scholar 

  3. Zeidel ML, Ambudkar SV, Smith BL, Agre P (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31(33):7436–7440

    Article  CAS  Google Scholar 

  4. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407(6804):599–605

    Article  CAS  Google Scholar 

  5. Agre P (2004) Aquaporin water channels. Biosci Rep 24(3):127–163

    Article  CAS  Google Scholar 

  6. de Groot BL, Grubmüller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294(5550):2353–2357

    Article  Google Scholar 

  7. Tajkhorshid E, Nollert P, Jensen MØ, Miercke LJW, O’Connell J, Stroud RM, Schulten K (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296(5567):525–530

    Article  CAS  Google Scholar 

  8. Jensen MØ, Tajkhorshid E, Schulten K (2003) Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys J 85(5):2884–2899

    Article  CAS  Google Scholar 

  9. Zhu FQ, Schulten K (2003) Water and proton conduction through carbon nanotubes as models for biological channels. Biophys J 85(1):236–244

    Article  CAS  Google Scholar 

  10. Gong XJ, Li JY, Lu HJ, Wan RZ, Li JC, Hu J, Fang HP (2007) A charge-driven molecular water pump. Nat Nanotechnol 2:709–712

    Article  CAS  Google Scholar 

  11. Li JY, Gong XJ, Lu HJ, Li D, Fang HP, Zhou RZ (2007) Electrostatic gating of a nanometer water channel. Proc Natl Acad Sci USA 104(10):3687–3692

    Article  CAS  Google Scholar 

  12. Tu YS, Zhou RZ, Fang HP (2010) Signal transmission, conversion and multiplication by polar molecules confined in nanochannels. Nanoscale 2:1976–1983

    Article  CAS  Google Scholar 

  13. Liu L, Qiao Y, Chen X (2008) Pressure-driven water infiltration into carbon nanotube: the effect of applied charges. Appl Phys Lett 92(10):101927

  14. Huang BD, Xia YY, Zhao MW, Li F, Liu XD, Ji YJ, Song C (2005) Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. J Chem Phys 122(8):084708

  15. Zhang ZQ, Ye HF, Liu Z, Ding JN, Cheng GG, Ling ZY, Zheng YG, Wang L, Wang JB (2012) Carbon nanotube-based charge-controlled speed-regulating nanoclutch. J Appl Phys 111(11):114304

  16. Dzubiella J, Hansen JP (2005) Electric-field-controlled water and ion permeation of a hydrophobic nanopore. J Chem Phys 122:234706

    CAS  Google Scholar 

  17. Dzubiella J, Allen RJ, Hansen JP. Electric field-controlled water permeation coupled to ion transport through a nanopore. J Chem Phys 120: 5001–5004

  18. Hub JS, Aponte-Santamaria C, Grubmüller H, de Groot BL (2010) Voltage-regulated water flux through aquaporin channels in silico. Biophys J 99(12):L97–L99

    Article  CAS  Google Scholar 

  19. Garate J-A, English NJ, MacElroy JMD (2009) Carbon nanotube assisted water self-diffusion across lipid membranes in the absence and presence of electric fields. Mol Simul 35(1):3–12

    Article  CAS  Google Scholar 

  20. Garate J-A, English NJ, MacElroy JMD (2009) Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes. J Chem Phys 131:114508

    Google Scholar 

  21. Wang Y, Zhao YJ, Huang JP (2011) Giant pumping of single-file water molecules in a carbon nanotube. J Phys Chem B 115:13275–13279

    CAS  Google Scholar 

  22. Su JY, Guo HX (2011) Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 5(1):351–359

    Article  CAS  Google Scholar 

  23. Wu XM, Lu LH, Zhu YD, Wei MJ, Guo XJ, Lu XH (2012) Changes in CNT-confined water structural properties induced by the variation in water molecule orientation. Mol Simul 38(13):1094–1102

    Article  CAS  Google Scholar 

  24. Vaitheeswaran S, Rasaiah JC, Hummer G (2004) Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J Chem Phys 121(16):7955–7965

    CAS  Google Scholar 

  25. Vegiri A, Schevkunov SV (2001) A molecular dynamics study of structural transitions in small water clusters in the presence of an external electric field. J Chem Phys 115:4175–4185

    CAS  Google Scholar 

  26. Fu ZM, Luo Y, Ma JP, Wei GH (2011) Phase transition of nanotube-confined water driven by electric field. J Chem Phys 134(15):154507

    Google Scholar 

  27. Joseph S, Aluru NR (2008) Pumping of confined water in carbon nanotubes by rotation- translation coupling. Phys Rev Lett 101(6):064502

    Article  Google Scholar 

  28. Figueras L, Faraudo J (2012) Competition between hydrogen bonding and electric field in single-file transport of water in carbon nanotubes. Mol Simul 38(1):23–25

    Article  CAS  Google Scholar 

  29. Wan RZ, Lu HJ, Li JY, Bao JD, Hu J, Fang HP (2009) Concerted orientation induced unidirectional water transport through nanochannels. Phys Chem Chem Phys 11:9898–9902

    Article  CAS  Google Scholar 

  30. Suk ME, Aluru NR (2009) Effect of induced electric field on single-file reverse osmosis. Phys Chem Chem Phys 11:8614–8619

    Article  CAS  Google Scholar 

  31. Engels M, Bashford D, Ghadiri MR (1995) Structure and dynamics of self-assembling peptide nanotubes and the channel-mediated water organization and self-diffusion. J Am Chem Soc 117:9151–9158

    Article  CAS  Google Scholar 

  32. Liu J, Fan JF, Tang M, Zhou WQ (2010) Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube. J Phys Chem A 114:2376–2383

    CAS  Google Scholar 

  33. Liu J, Fan JF, Tang M, Cen M, Yan JF, Liu Z, Zhou WQ (2010) Water diffusion behaviors and transportation properties in transmembrane cyclic hexa-, octa- and decapeptide nanotubes. J Phys Chem B 114:12183–12192

    CAS  Google Scholar 

  34. Hwang H, Schatz GC, Ratner MA (2006) Steered molecular dynamics studies of the potential of mean force of a Na+ or K+ ion in a cyclic peptide nanotube. J Phys Chem B 110:26448–26460

    CAS  Google Scholar 

  35. Song XZ, Fan JF, Liu DY, Li H, Li R (2013) Molecular dynamics study of Na+ transportation in a cyclic peptide nanotube and its influences on water behaviors in the tube. J Mol Model 19(10):4271–4282

    Article  CAS  Google Scholar 

  36. Liu DY, Fan JF, Song XZ, Li R, Li H (2013) MD simulations on the influences of an external force on the water transportation behavior through a cyclic peptide nanotube. Comput Mater Sci 78:47–54

    Article  CAS  Google Scholar 

  37. Aksimentiev A, Wells D, Sigalov G (2006) User-defined forces in NAMD. http://www.ks.uiuc.edu/Training/Tutorials/

  38. Phillips JC, Braun R, Wang WJ, Gumbart E, Tajkhorshid E, Villa C, Chipot RD, Skeel LK, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  39. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    CAS  Google Scholar 

  40. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    CAS  Google Scholar 

  41. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    CAS  Google Scholar 

  42. Ryckaert J-P, Ciccotti G, Berendsen HJC (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Chem Phys 23(3):327–341

    CAS  Google Scholar 

  43. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177–4189

    CAS  Google Scholar 

  44. Grest GS, Kremer K (1986) Molecular-dynamics simulation for polymers in the presence of a heat bath. Phys Rev A 33:3628–3631

    Article  CAS  Google Scholar 

  45. Humphrey W, Dalke A, Schulten K (1996) VMD-visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  46. Berezhkovskii A, Hummer G (2002) Single-file transport of water molecules through a carbon nanotube. Phys Rev Lett 89(6):064503–1

    Article  Google Scholar 

  47. Kalra A, Garde S, Hummer G (2003) Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 100(18):10175–10180

    Article  CAS  Google Scholar 

  48. Tajkhorshid E, Zhu FQ, Schulten K (2005) Kinetic theory and simulation of single-channel water transport. In: handbook of materials modeling. Springer, Netherlands, pp 1797–1822

    Google Scholar 

  49. Zhu FQ, Tajkhorshid E, Schulten K (2002) Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys J 83:154–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 21173154; and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors are grateful to Mr. Jan Liu, Xuezeng Song for their insightful suggestions, and indebted to School of Computer Science & Technology in Soochow University for providing us with generous amounts of computer facilities assigned to high-powered computers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfen F. Fan.

Electronic supplementary material

Supplementary Figs. S1 and S2.

ESM 1

(DOC 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Fan, J.F., Li, R. et al. Molecular dynamics studies on the influences of a gradient electric field on the water chain in a peptide nanotube. J Mol Model 20, 2370 (2014). https://doi.org/10.1007/s00894-014-2370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2370-x

Keywords

Navigation