Skip to main content

Advertisement

Log in

A study of the interaction between HIV-1 protease and C 2-symmetric inhibitors by computational methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The human immunodeficiency virus type 1 protease (HIV-1 PR) is a major target for the design of anti-AIDS (acquired immune deficiency syndrome) drugs. Some C 2-symmetric inhibitors have been designed for the C 2-symmetric binding pocket of HIV-1PR. The crystallographic structures reveal that the binding modes are not C 2-symmetric for C 2- symmetric inhibitors binding to PR. In this work, four molecular dynamics (MD) simulations were performed to investigate the binding modes between four C 2-symmetric inhibitors (6 AD, 6AG, 6FD and 6FG) and PR, as well as the stabilities of these inhibitors in the binding pocket. Analysis of the hydrophobic surface of the binding pocket shows that it is necessary to add a polar group to the P1 (benzyl) and P2 (phenyl) groups of the inhibitor 6AD. Analysis of the hydrogen bonds formed between inhibitors and residues (Asp25/Asp25′, Ile50/Ile50′) indicates that the steric structures of the inhibitors are not suitable for the binding pocket. The two increased polar groups of trifluoromethyl and formamido meet the needs of the binding pocket for polar molecules. The inhibitor with both these groups (6FG) has stronger stability than the other three inhibitors, which have only one (6AG and 6FD) or none (6AD) of these groups. The ranking of binding free energies calculated by molecular mechanics-generalized born surface area (MM-GBSA) method agrees well with the experimental data. It is expected that this study will provide theoretical guidance for the design of anti-AIDS drugs targeting HIV-1PR.

Left Inhibitor 6AD in the binding pocket of human immunodeficiency virus type 1 protease. Right Differences of free energies for trifluoromethyl and formaminde

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–d

Similar content being viewed by others

References

  1. WHO (2013) UNAIDS report on the global AIDS epidemic 2013, http://www.unaids.org/en/resources/campaigns/globalreport2013/

  2. Wlodawer A, Vondrasek J (1998) Annu Rev Biophys Biomol Struct 27:249–284

    Article  CAS  Google Scholar 

  3. Nicholson LK, Yamazaki T, Torchia DA, Grzesiek S, Bax A, Stahl SJ, Kaufman JD, Wingfield PT, Lam PY, Jadhav PK et al (1995) Nat Struct Biol 2:274–280

    Article  CAS  Google Scholar 

  4. Zhou T, Zhu J, Wu X, Moquin S, Zhang B, Acharya P, Georgiev IS, Altae-Tran HR, Chuang GY, Joyce MG, Do Kwon Y, Longo NS, Louder MK, Luongo T, McKee K, Schramm CA, Skinner J, Yang Y, Yang Z, Zhang Z, Zheng A, Bonsignori M, Haynes BF, Scheid JF, Nussenzweig MC, Simek M, Burton DR, Koff WC, Mullikin JC, Connors M, Shapiro L, Nabel GJ, Mascola JR, Kwong PD (2013) Immunity 39:245–258

  5. Kwong PD, Mascola JR, Nabel GJ (2013) Nat Rev Immunol 13:693–701

    CAS  Google Scholar 

  6. Barbaro G, Scozzafava A, Mastrolorenzo A, Supuran CT (2005) Curr Pharm Des 11:1805–1843

    Article  CAS  Google Scholar 

  7. Rodriguez-Barrios F, Gago F (2004) Curr Top Med Chem 4:991–1007

    CAS  Google Scholar 

  8. D'Aquila RT, Schapiro JM, Brun-Vezinet F, Clotet B, Conway B, Demeter LM, Grant RM, Johnson VA, Kuritzkes DR, Loveday C, Shafer RW, Richman DD (2002) Top HIV Med 10:21–25

  9. Blum A, Bottcher J, Heine A, Klebe G, Diederich WE (2008) J Med Chem 51:2078–2087

    Article  CAS  Google Scholar 

  10. Xu Y, Wang R (2006) Proteins 64:1058–1068

    Article  CAS  Google Scholar 

  11. Wu EL, Han K, Zhang JZ (2008) Chemistry 14:8704–8714

    Article  CAS  Google Scholar 

  12. Fu C, Shushen L, Xintian D (2013) Acta Chim Sin 71:1035–1040

    Article  Google Scholar 

  13. Shi S, Hu G, Chen J, Zhang S-L, Zhang Q (2009) Acta Chim Sin 67:2791–2797

    CAS  Google Scholar 

  14. Ode H, Neya S, Hata M, Sugiura W, Hoshino T (2006) J Am Chem Soc 128:7887–7895

    Article  CAS  Google Scholar 

  15. Hu G, Zhu T, Zhang S-L, Wang D, Zhang Q (2010) Eur J Med Chem 45:227–235

    Article  CAS  Google Scholar 

  16. Leonis G, Steinbrecher T, Papadopoulos MG (2013) J Chem Inf Model 53:2141–153

    Article  CAS  Google Scholar 

  17. Hou T, Zhang W, Wang J, Wang W (2009) Proteins 74:837–846

    Article  CAS  Google Scholar 

  18. Stoica I, Sadiq SK, Coveney PV (2008) J Am Chem Soc 130:2639–2648

    Article  CAS  Google Scholar 

  19. Wu EL, Wong KY, Zhang X, Han K, Gao J (2009) J Phys Chem B 113:2477–2485

    CAS  Google Scholar 

  20. Zhuang S, Zou J, Jiang Y, Mao X, Zhang B, Liu H, Yu Q (2005) J Med Chem 48:7208–7214

    Article  CAS  Google Scholar 

  21. Chen X, Zhao X, Wang S, Wang L, Li W, Sun C (2013) Acta Chim Sin 71:199–204

    Article  CAS  Google Scholar 

  22. Chen SF, Cao Y, Chen JJ, Chen JZ (2013) J Mol Model 19:5097–5112

    Article  CAS  Google Scholar 

  23. Case DA, Darden TA, Cheatham TE, III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W et al (2008) AMBER 10. University of San Fransisco, San Fransisco, CA, http://ambermd.org/

  24. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  25. Cieplak P, Cornell WD, Bayly C, Kollman PAJ (1995) J Comput Chem 16:1357

    Article  CAS  Google Scholar 

  26. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    CAS  Google Scholar 

  28. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    CAS  Google Scholar 

  29. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327

    Article  CAS  Google Scholar 

  30. Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112:6127–6129

    Article  CAS  Google Scholar 

  31. Weiser J, Shenkin PS, Still WC (1999) J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  32. Onufriev A, Bashford D, Case DA (2004) Proteins: Structure. Function Bioinform 55:383–394

    Article  CAS  Google Scholar 

  33. Pearlman DA (2005) J Med Chem 48:7796–7807

    Article  CAS  Google Scholar 

  34. Gohlke H, Kiel C, Case DA (2003) J Mol Biol 330:891–913

    Article  CAS  Google Scholar 

  35. Kar P, Knecht V (2012) J Phys Chem B 116:2605–2614

    CAS  Google Scholar 

  36. Kar P, Lipowsky R, Knecht V (2011) J Phys Chem B 115:7661–7669

    CAS  Google Scholar 

  37. Hu G, Zhang Q, Chen LY (2011) J Mol Model 17:1919–1926

    Article  CAS  Google Scholar 

  38. Hu G, Wang J (2014) Eur J Med Chem 74:726–735

    Article  CAS  Google Scholar 

  39. Hu G, Wang D, Liu X, Zhang Q (2010) J Comput Aided Mol Des 24:687–697

    Article  CAS  Google Scholar 

  40. Chen J, Wang J, Zhu W, Li G (2013) J Comput Aided Mol Des 27:965–974

Download references

Acknowledgments

This work was partially supported by funding from the National Natural Science Foundation of China (61271378 and 11274206), the Natural Science Foundation of Shandong Province (ZR2013AM014 and ZR2012CL09) and A Project of Shandong Province Higher Educational Science and Technology Program (J14LJ05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Hu, G., Zhang, X. et al. A study of the interaction between HIV-1 protease and C 2-symmetric inhibitors by computational methods. J Mol Model 20, 2369 (2014). https://doi.org/10.1007/s00894-014-2369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2369-3

Keywords

Navigation