Skip to main content

Influence of different free radicals on scavenging potency of gallic acid

Abstract

The M05-2X/6-311++G(d,p) and B3LYP-D2/6-311++G(d,p) models are used to evaluate scavenging potency of gallic acid. The hydrogen atom transfer (HAT), sequential proton loss electron transfer (SPLET), and single electron transfer followed by proton transfer (SET-PT) mechanisms of gallic acid with some radicals (OO, OH, and CH3OO) were investigated using the corresponding thermodynamic quantities: bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA). Namely, the ΔHBDE, ΔHIP, and ΔHPA values of the corresponding reactions in some solvents (water, DMSO, pentylethanoate, and benzene) are investigated using an implicit solvation model (SMD). An approach based on the reactions enthalpies related to the examined mechanisms is applied. This approach shows that a thermodynamically favored mechanism depends on the polarity of reaction media and properties of free radical reactive species. The most acidic 4-OH group of gallic acid is the active site for radical inactivation. The results of this investigation indicate that the SPLET mechanism can be a favored reaction pathway for all three radicals in all solvents, except for OH in the aqueous solution. In water, gallic acid can inactivate OH by the HAT mechanism.

Influence of different solvents on antioxidative mechanisms of gallic acid

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bianco M-A, Handaji A, Savolainen H (1998) Quantitative analysis of ellagic acid in hardwood samples. Sci Total Environ 222:123–126

    CAS  Article  Google Scholar 

  2. 2.

    Pettersen RC, Ward JC, Lawrence AH (1993) Detection of northern red oak wetwood by fast heating and ion mobility spectrometric analysis. Holzforschung 47:513–522

    CAS  Article  Google Scholar 

  3. 3.

    Koga T, Moro K, Nakamori K, Yamakoshi J, Hosoyama H, Kataoka S, Ariga T (1999) Increase of antioxidative potential of rat plasma by oral administration of proanthocyanidin-rich extract from grape seeds. J Agric Food Chem 47:1892–1897

    CAS  Article  Google Scholar 

  4. 4.

    Burns J, Gardner PT, O’Neil J, Crawford S, Morecroft I, McPhail DB, Lister C, Matthews D, MacLean MR, Lean MEJ, Duthie GG, Crozier A (2000) Relantionship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. J Agric Food Chem 48:220–230

    CAS  Article  Google Scholar 

  5. 5.

    Sakagami H, Yokote Y, Akahane K (2001) Changes in amino acid pool and utilization during apoptosis in HL-60 cells induced by epigallocatechin gallate or gallic acid. Anticancer Res 21:2441–2447

    CAS  Google Scholar 

  6. 6.

    Krilov A, Holmgren A, Gref R, Öhman L-O (1993) Effect of gallic acid on metals: an FT-IR study of complexes between gallic acid and sawblade steel. Holzforschung 47:239–246

    CAS  Article  Google Scholar 

  7. 7.

    Shukla YN, Srivastava A, Kumar S, Kumar S (1999) Phytotoxic and antimicrobial constituents of Argyreia speciosa and Oenothera biennis. J Ethnopharmacol 67:241–245

    CAS  Article  Google Scholar 

  8. 8.

    Gutteridge JMC, Halliwell B (1994) Antioxidants in nutrition, health, and disease, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  9. 9.

    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    CAS  Article  Google Scholar 

  10. 10.

    Klein E, Lukeš V, Ilčin M (2007) DFT/B3LYP study of tocopherols and chromans antioxidant action energetics. Chem Phys 336:51–57

    CAS  Article  Google Scholar 

  11. 11.

    Litwinienko G, Ingold KU (2007) Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res 40:222–230

    CAS  Article  Google Scholar 

  12. 12.

    Di Meo F, Lemaur V, Cornil J, Lazzaroni R, Duroux J-L, Olivier Y, Trouillas P (2013) Free radical scavenging by natural polyphenols: atom versus electron transfer. J Phys Chem A 117:2082–2092

    Article  Google Scholar 

  13. 13.

    Foti MC, Daquino C, Geraci C (2004) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH radical in alcoholic solutions. J Org Chem 69:2309–2314

    CAS  Article  Google Scholar 

  14. 14.

    Marković Z, Milenković D, Đorović J, Jeremić S (2013) Solvation enthalpies of the proton and electron in polar and non-polar solvents. J Serb Soc Comput Mech 7:1–9

    Google Scholar 

  15. 15.

    Bartmess JE (1994) Thermodynamics of the electron and the proton. J Phys Chem 98:6420–6424

    CAS  Article  Google Scholar 

  16. 16.

    Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 123(1–4):161103

    Article  Google Scholar 

  17. 17.

    McLean AD, Chandler GS (1980) Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639–5648

    CAS  Article  Google Scholar 

  18. 18.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick AD, Rabuck KD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, HeadGordon M, Replogle ES, Pople JA (2010) Gaussian 09, revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  19. 19.

    Black G, Simmie JM (2010) Barrier heights for H-atom abstraction by HO2 from n-butanol-a simple yet exacting test for model chemistries? J Comput Chem 31:1236–1248

    CAS  Google Scholar 

  20. 20.

    Galano A, Macias-Ruvalcaba NA, Medina-Campos ON, Pedraza-Chaverri J (2010) Mechanism of the OH radical scavenging activity of nordihydroguaiaretic acid: a combined theoretical and experimental study. J Phys Chem B 114:6625–6635

    CAS  Article  Google Scholar 

  21. 21.

    Marković ZS, Dimitrić Marković JM, Doličanin ĆB (2010) Mechanistic pathways for the reaction of quercetin with hydroperoxy radical. Theor Chem Accounts 127:69–80

    Article  Google Scholar 

  22. 22.

    Zavala-Oseguera C, Alvarez-Idaboy JR, Merino G, Galano A (2009) OH radical gas phase reactions with aliphatic ethers: a variational transition state theory study. J Phys Chem A 113:13913–13920

    CAS  Article  Google Scholar 

  23. 23.

    Alberto ME, Russo N, Grand A, Galano A (2013) A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Phys Chem Chem Phys 15:4642–4650

    CAS  Article  Google Scholar 

  24. 24.

    Marković Z, Milenković D, Đorović J, Dimitrić Marković JM, Stepanić V, Lučić B, Amić D (2012) PM6 and DFT study of free radical scavenging activity of morin. Food Chem 134:1754–1760

    Article  Google Scholar 

  25. 25.

    Grimme S (2011) Density functional theory with London dispersion corrections. WIREs Comput Mol Sci 1:211–228

    CAS  Article  Google Scholar 

  26. 26.

    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion coorrection. J Comput Chem 27:1787–1799

    CAS  Article  Google Scholar 

  27. 27.

    Bayach I, Sancho-García JC, Di Meo F, Weber J-FF, Trouillas P (2013) π-stacked polyphenolic dimers: a case study using dispersion-corrected methods. Chem Phys Lett 578:120–125

    CAS  Article  Google Scholar 

  28. 28.

    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  29. 29.

    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  30. 30.

    Carpenter JE, Weinhold F (1988) Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure. J Mol Struct (Theochem) 169:41–62

    Article  Google Scholar 

  31. 31.

    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Article  Google Scholar 

  32. 32.

    Medina ME, Iuga C, Alvarez-Idaboy JR (2013) Antioxidant activity of propyl gallate in aqueous and lipid media: a theoretical study. Phys Chem Chem Phys 15:13137–13146

    CAS  Article  Google Scholar 

  33. 33.

    Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    CAS  Article  Google Scholar 

  34. 34.

    Nsangou M, Dhaouadi Z, Jaidane N, Ben Lakhdar Z (2008) DFT study of the structure of hydroxybenzoic acids and their reactions with OH and O2 radicals. J Mol Struct (Theochem) 850:135–143

    CAS  Article  Google Scholar 

  35. 35.

    Leopoldini M, Marino T, Russo N, Toscano M (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922

    CAS  Article  Google Scholar 

  36. 36.

    Marković ZS, Dimitrić-Marković JM, Milenković D, Filipović N (2011) Structural and electronic features of baicalein and its radicals. Monatsh Chem 142:145–152

    Article  Google Scholar 

  37. 37.

    Rimarčik J, Lukeš V, Klein E, Ilčin M (2010) Study of the solvent effect on the enthalpies of homolytic and heterolytic N−H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine. J Mol Struct (Theochem) 952:25–30

    Article  Google Scholar 

  38. 38.

    Vaganek A, Rimarčik J, Lukeš V, Klein E (2012) On the energetics of homolytic and heterolytic O–H bond cleavage in flavonoids. Comp Theor Chem 991:192–200

    CAS  Article  Google Scholar 

  39. 39.

    Shahidi F, Janitha PK, Wanasundara PD (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67–103

    CAS  Article  Google Scholar 

  40. 40.

    Hussein MA (2011) A convenient mechanism for the free radical scavenging activity of resveratrol. Int J Phytomed 3:459–469

    CAS  Google Scholar 

  41. 41.

    Fang Y-Z, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Ministry of Science of the Republic of Serbia (Projects No. 172015 and 174028), and the Ministry of Science, Education and Sports of the Republic of Croatia (Projects Nos.: 079-0000000-3211 and 098-0982464-2511).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jelena Đorović.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2934 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Đorović, J., Marković, J.M.D., Stepanić, V. et al. Influence of different free radicals on scavenging potency of gallic acid. J Mol Model 20, 2345 (2014). https://doi.org/10.1007/s00894-014-2345-y

Download citation

Keywords

  • Bond dissociation enthalpy
  • DFT
  • Gallic acid
  • Proton affinity