Skip to main content
Log in

A theoretical study on diastereoselective oxidative dearomatization by iodoxybenzoic acid

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The reaction mechanism of diastereoselective oxidative dearomatization by iodoxybenzoic acid of key compounds involved in the total synthesis of epicocconone analogs, which are efficient fluorophores with a wide range of applications in protein staining and separation, was studied using density functional theory. In particular, the conformational space was investigated, as was the role of the so-called hypervalent twist move, which is thought to be the rate-determining step. Both kinetic and thermodynamical aspects of the mechanism were considered from static and dynamic viewpoints, including solvent effects. The results were then rationalized using conceptual density functional theory and Bader’s atoms-in-molecules framework, which demonstrated how complementary these two approaches are when studying organic chemistry reactions theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wirth T (ed) (2003) Hypervalent iodine chemistry. Springer, Berlin

    Google Scholar 

  2. Zhdankin VV (2009) Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC (i) 1–62

  3. Ladziata U, Zhdankin VV (2006) Hypervalent iodine(V) reagents in organic synthesis. ARKIVOC (ix) 26–58

  4. Silva LF Jr, Olofssonb B (2011) Hypervalent iodine reagents in the total synthesis of natural products. Nat Prod Rep 28:1722–1754

    Article  CAS  Google Scholar 

  5. Yusubov MS, Zhdankin VV (2012) Hypervalent iodine reagents and green chemistry. Curr Org Synth 9:247–272

    Article  CAS  Google Scholar 

  6. Liang H, Ciufolini MA (2011) Chiral hypervalent iodine reagents in asymmetric reactions. Angew Chem Int Ed 50:11849–11851

    Article  CAS  Google Scholar 

  7. Shah AA, Khan ZA, Choudhary N et al (2009) Iodoxolone-based hypervalent iodine reagents. Org Lett 11:3578–3581

    Article  CAS  Google Scholar 

  8. Troian-Gautier L, De Winter J, Gerbaux P et al (2013) A direct method for oxidizing quinoxaline, tetraazaphenanthrene, and hexaazatriphenylene moieties using hypervalent λ3-iodinane compounds. J Org Chem 78:11096–11101

    Article  CAS  Google Scholar 

  9. Yoshimura A, Middleton KR, Todora AD et al (2013) Hypervalent iodine catalyzed generation of nitrile oxides from oximes and their cycloaddition with alkenes or alkynes. Org Lett 15:4010–4013

    Article  CAS  Google Scholar 

  10. Satam V, Harad A, Rajule R et al (2010) 2-Iodoxybenzoic acid (IBX): an efficient hypervalent iodine reagent. Tetrahedron 66:7659–7706

    Article  CAS  Google Scholar 

  11. Frigerio M, Santagostino M (1994) A mild oxidizing reagent for alcohols and 1,2-diols: o-iodoxybenzoic acid (IBX) in DMSO. Tetrahedron Lett 35:8019–8022

  12. Zhdankin VV, Stang PJ (2002) Recent developments in the chemistry of polyvalent iodine compounds. Chem Rev 102:2523–2584

    Article  CAS  Google Scholar 

  13. Nicolaou KC, Baran PS, Zhong Y-L (2001) Selective oxidation at carbon adjacent to aromatic systems with IBX. J Am Chem Soc 123:3183–3185

    Article  CAS  Google Scholar 

  14. Stang PJ (2003) Polyvalent iodine in organic chemistry. J Org Chem 68:2997–3008

    Article  CAS  Google Scholar 

  15. Stang PJ, Zhdankin VV (2008) Chemistry of polyvalent iodine. Chem Rev 108:5299–5358

    Article  Google Scholar 

  16. Uyanik M, Ishihara K (2009) Hypervalent iodine-mediated oxidation of alcohols. Chem Commun 2086–2099

  17. Uyanik M, Akakura M, Ishihara K (2009) 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone. J Am Chem Soc 131:251–262

  18. Kommreddy A, Bowsher MS, Gunna MR et al (2008) Expedient synthesis and solvent dependent oxidation behavior of a water-soluble IBX derivative. Tetrahedron Lett 49:4378–4382

    Article  CAS  Google Scholar 

  19. Thottumkara AP, Thottumkara KV (2002) Synthesis and oxidation reactions of a user- and eco-friendly hypervalent iodine reagent. Tetrahedron Lett 43:569–572

    Article  CAS  Google Scholar 

  20. Quideau S, Pouységu L, Deffieux D (2008) Oxidative dearomatization of phenols: why, how and what for? Synlett 4:467–495

  21. Pouységu L, Sylla T, Garnier T et al (2010) Hypervalent iodine-mediated oxygenative phenol dearomatization reactions. Tetrahedron 66:5908–5917

    Article  Google Scholar 

  22. Uyanik M, Yasui T, Ishihara K (2013) Hydrogen bonding and alcohol effects in asymmetric hypervalent iodine catalysis: enantioselective oxidative dearomatization of phenols. Angew Chem Int Ed 52:9215–9218

    Article  CAS  Google Scholar 

  23. Boulangé A, Peixoto PA, Franck X (2011) Diastereoselective IBX oxidative dearomatization of phenols by remote induction: towards the epicocconone core framework. Chem-Eur J 17:10241–10245

    Google Scholar 

  24. Bell PJL, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J Am Chem Soc 125:9304–9305

  25. Coghlan DR, Mackintosh JA, Karuso P (2005) Mechanism of reversible fluorescent staining of protein with epicocconone. Org Lett 7:2401–2404

    Article  CAS  Google Scholar 

  26. Choi HY, Veal DA, Karuso P (2006) Epicocconone, a new cell-permeable long Stokes’ shift fluorescent stain for live cell imaging and multiplexing. J Fluoresc 16:475–482

    Article  CAS  Google Scholar 

  27. Mackintosh JA, Choi HY, Bae SH et al (2003) A fluorescent natural product for ultra sensitive detection of proteins in 1-D and 2-D gel electrophoresis. Proteomics 3:2273–2288

    Article  CAS  Google Scholar 

  28. Panda D, Datta A (2007) Evidence for covalent binding of epicocconone with proteins from synchronous fluorescence spectra and fluorescence lifetimes. J Chem Sci 119:99–104

    Article  CAS  Google Scholar 

  29. Chevalier F (2010) Standard dyes for total protein staining in gel-based proteomic analysis. Materials 3:4784–4792

  30. Smejkal GB, Robinson MH, Lazarev A (2004) Comparison of fluorescent stains: relative photostability and differential staining of proteins in two-dimensional gels. Electrophoresis 25:2511–2519

  31. Peixoto P (2009) Synthesis of new fluorescent biomarkers based on the structure of epicocconone for the detection of proteins. Ph.D. thesis. Université de Rouen, Mont-Saint-Aignan

  32. Boulangé A (2012) Synthesis of analogues of epicocconone by oxidative dearomatization reaction. Structure−fluorescence relationship and proteomics applications. Ph.D. thesis. Université de Rouen, Mont-Saint-Aignan

  33. Syzgantseva OA, Tognetti V, Joubert L et al (2012) Electronic excitations in epicocconone analogues: TDDFT methodological assessment guided by experiment. J Phys Chem A 116:8634–8643

    Article  CAS  Google Scholar 

  34. Chatterjee S, Karuso P, Boulangé A et al (2013) The role of different structural motifs in the ultrafast dynamics of second generation protein stains. J Phys Chem B 117:14951–14959

    CAS  Google Scholar 

  35. Syzgantseva OA, Tognetti V, Boulangé A et al (2014) Evaluating charge transfer in epicocconone analogues: towards a targeted design of fluorophores. J Phys Chem A 118:757–764

    CAS  Google Scholar 

  36. Frisch MJ et al (2009) Gaussian 09, revision B.01. Gaussian, Inc., Wallingford

  37. Lynch BJ, Fast PL, Harris M et al (2000) Adiabatic connection for kinetics. J Phys Chem A 104:4811–4815

    CAS  Google Scholar 

  38. Su JT, Goddard WA III (2005) Enhancing 2-iodoxybenzoic acid reactivity by exploiting a hypervalent twist. J Am Chem Soc 127:14146–14147

    Article  CAS  Google Scholar 

  39. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

  40. Check CE, Faust TO, Bailey JM et al (2001) Addition of polarization and diffuse functions to the LANL2DZ basis set for P-block elements. J Phys Chem A 105:8111–8116

  41. Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368

  42. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    CAS  Google Scholar 

  43. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anistropic dielectrics. J Chem Phys 107:3032–41

    Google Scholar 

  44. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110

  45. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  46. Keith TA (2012) AIMAll (version 12.09.23). TK Gristmill Software, Overland Park

  47. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  48. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  49. Morell C, Grand A, Toro-Labbé A (2005) A new dual descriptor for chemical reactivity. J Phys Chem A 109:205–212

  50. Zielinski F, Tognetti V, Joubert L (2012) Condensed descriptors for reactivity. A methodological study. Chem Phys Lett 527:67–72

  51. Tognetti V, Morell C, Ayers PW et al (2013) A proposal for an extended dual descriptor: a possible solution when frontier molecular orbital theory fails. Phys Chem Chem Phys 15:14465–14475

    Article  CAS  Google Scholar 

  52. Moorthy JN, Senapati K, Parida KN et al (2011) Twist does a twist to the reactivity: stoichiometric and catalytic oxidations with twisted tetramethyl-IBX. J Org Chem 76:9593–9601

    Article  CAS  Google Scholar 

  53. Guilbault A-A, Legault CY (2012) Drastic enhancement of activity in iodane-based α-tosyloxylation of ketones: iodine(III) does the hypervalent twist. ACS Catal 2:219–222

    Article  CAS  Google Scholar 

  54. Sajith PK, Suresh CH (2013) Trans and cis influences in hypervalent iodine(III) complexes: a DFT study. Inorg Chem 52:6046–6054

  55. Fradera X, Austen MA, Bader RFW (1999) The Lewis model and beyond. J Phys Chem A 103:304–314

  56. Firme CL, Antunes OAC, Esteves PM (2007) Electronic nature of planar cyclobutenyl dication derivatives. J Phys Chem A 111:11904–11907

    CAS  Google Scholar 

  57. Pinter B, Van Speybroeck V, Waroquier M et al (2013) Trans effect and trans influence: importance of metal mediated ligand–ligand repulsion. Phys Chem Chem Phys 15:17354–17365

  58. Popelier PLA (2012) Quantum chemical topology: knowledgeable atoms in peptides. AIP Conf Proc 1456:261–268

    Article  CAS  Google Scholar 

  59. Stewart JPP (2007) Optimization of parameters for semi-empirical methods. V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the grant ANR-BLAN-732-01 for financial support, and the Centre de Ressources Informatiques de Haute-Normandie (CRIHAN) for providing HPC resources. V.T. and L.J. thank the Centre National de la Recherche Scientifique (CNRS) for a Chaire d’Excellence at the University of Rouen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Tognetti.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tognetti, V., Boulangé, A., Peixoto, P.A. et al. A theoretical study on diastereoselective oxidative dearomatization by iodoxybenzoic acid. J Mol Model 20, 2342 (2014). https://doi.org/10.1007/s00894-014-2342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2342-1

Keywords

Navigation