Theoretical studies of separation of cis–trans isomers using dinuclear (Cu2+- and Zn2+-based) cryptates

Original Paper
  • 104 Downloads

Abstract

Theoretical investigations have been carried out using density functional theory, with the M06L functional and SMD solvent-modeling, to study the binding interactions of geometrical cis-trans isomers of fumarate (fum2−), maleate (male2−) and 1,2-cyclopropane dicarboxylate with Cu2+- and Zn2+-based dinuclear cryptates. It was found that cis-trans isomers of these groups of compounds bind strongly to metal cryptates, and the binding ability of the cryptates is controlled by the shape of the ‘incoming’ isomer (cis or trans); trans isomers bind more strongly than cis. Due to the size and shape of the cis and trans isomers, the cryptates can bind selectively and, to a large extent, ‘recognize’ the various cis-trans isomers, suggesting the tantalising possibility of isomeric separation/purification and recognition.

Figure

Density functional theory calculations have been used to study the binding interactions of geometrical cis-trans isomers of fumarate (fum2−), maleate (male2−) and 1,2-cyclopropane dicarboxilate with Cu2+- and Zn2+-based dinuclear cryptates; Cu-based cryptate bound complexes are shown here. Cis-trans isomers bind strongly, and this is controlled by the shape of the ‘incoming’ isomer (cis or trans); trans isomers bind more strongly than cis. Binding is selective with ‘recognition’ of various cis-trans isomers.

Keywords

Metal Cryptates DFT, Binding energies cis–trans isomers 

Supplementary material

894_2014_2328_MOESM1_ESM.doc (1.3 mb)
ESM 1(DOC 1382 kb)

References

  1. 1.
    Lehn JM, Sauvage JP (1971) J Chem Soc Chem Commun 440–441Google Scholar
  2. 2.
    Lehn JM (1980) Pure Appl Chem 52:2441Google Scholar
  3. 3.
    Lehn JM, Pine SH, Watanabe EI, Willard AC (1977) J Am Chem Soc 99:6755CrossRefGoogle Scholar
  4. 4.
    Motekaitis RJ, Martell AE, Lehn JM, Watanabe EI (1982) Inorg Chem 21:4253CrossRefGoogle Scholar
  5. 5.
    Arnaud-Neu F, Fuangswasdi S, Maubert B, Nelson J, McKee V (2000) Inorg Chem 39:573–579CrossRefGoogle Scholar
  6. 6.
    Amendola V, Fabbrizzi L, Mangano C, Pallavicini P, Poggi A, Taglietti A (2001) Coord Chem Rev 219:821CrossRefGoogle Scholar
  7. 7.
    El-Hendawy MM, English NJ, Mooney DA (2012) Inorg Chem 51:5282–5288CrossRefGoogle Scholar
  8. 8.
    El-Hendawy MM, English NJ, Mooney DA (2011) J Mol Model 17:3151–3162CrossRefGoogle Scholar
  9. 9.
    English NJ, El-Hendawy MM, Mooney DA, MacElroy JMD (2014) Coord Chem Rev 269:85–95CrossRefGoogle Scholar
  10. 10.
    El-Hendawy MM, Bandaru S, English NJ, Mooney DA (2013) Catal Sci Technol 3:2234CrossRefGoogle Scholar
  11. 11.
    Chen JM, Wei W, Feng XL, Lu TB (2007) Chem: Asian J 2:710–719Google Scholar
  12. 12.
    Dussart Y, Harding C, Dalgaard P, McKenzie C, Kadirvelraj R, McKee V, Nelson J (2002) J Chem Soc Dalton Trans 1704–1713Google Scholar
  13. 13.
    Xie G, Jiang L, Lu T (2013) Dalton Trans 42:14092–14099CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Schultz NE, Truhlar DGJ (2006) Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CTGoogle Scholar
  16. 16.
    Nicklass A, Dolg M, Stoll H, Preuss HJ (1995) Chem Phys 102:8942–8952CrossRefGoogle Scholar
  17. 17.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724CrossRefGoogle Scholar
  18. 18.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The SFI Strategic Research Cluster in Solar Energy ConversionUniversity College DublinDublin 4Ireland
  2. 2.School of Chemical and Bioprocess EngineeringUniversity College DublinDublin 4Ireland
  3. 3.Centre for Synthesis and Chemical BiologyUniversity College DublinDublin 4Ireland

Personalised recommendations