Skip to main content
Log in

Industrial applications of in silico ADMET

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Quantitative structure activity relationship (QSAR) modeling has been in use for several decades now. One branch of it, in silico ADMET, became more and more important since the late 1990s as studies indicated that poor pharmacokinetics and toxicity were important causes of costly late-stage failures in drug development. In this paper we describe some of the available methods and best practice for the different stages of the in silico model building process. We also describe some more recent developments, like automated model building and the prediction probability. Finally we will discuss the use of in silico ADMET for “big data” and the importance and possible further development of interpretable models.

Schematic ADMET model generation process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Richet MC (1893) Note sur le rapport entre la toxicité et les propriétés physiques des corps. C R Soc Biol 45:775–776

    Google Scholar 

  2. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 273:2985–2993

    Article  Google Scholar 

  3. Overton E (1901) Studien über die Narkose. Gustav Fischer, Jena

    Google Scholar 

  4. Meyer H (1899) Zur Theorie der Alkoholnarkose. Arch Exp Pathol Pharmakol 42:109–118

    Article  Google Scholar 

  5. Hansch C, Maloney P, Fujita T, Muir R (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178–180

    Article  CAS  Google Scholar 

  6. Hansch C, Sammes PG, Taylor JB (1990) Quantitative Drug Design. In: Ramsden CA (ed) Comprehensive Medicinal Chemistry. Pergamon Press, Oxford

    Google Scholar 

  7. Kubiniyi H (1993) QSAR. Hansch analysis and related approaches. 1. In: Mangold R, Krosgaard Larsen P, Timmermann H (eds) Methods and principles in medicinal chemistry. VCH, Weinheim

    Google Scholar 

  8. Leo A, Jow PY, Silipo C, Hansch C (1975) Calculation of hydrophobic constant (log P) from pi and f constants. J Med Chem 18:865–868

    Article  CAS  Google Scholar 

  9. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  Google Scholar 

  10. Beck B, Glen RC, Clark T (1996) The inhibition of alpha-chymotrypsin predicted using theoretically derived molecular properties. J Mol Graph 14(130–5):142

    Google Scholar 

  11. Breindl A, Beck B, Clark T, Glen RC (1997) Prediction of the n-octanol/water partition coefficient, logP, using a combination of semiempirical mo-calculations and a neural network. J Mol Model 3:142–155

    Article  CAS  Google Scholar 

  12. TSAR, Oxford Molecular Limited, The Magdalen Centre, Oxford Science Park, Sandford on Thames, Oxford OX4 4GA, UK

  13. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  Google Scholar 

  14. Kennedy T (1997) Managing the drug discovery/development interface. Drug Discov Today 210:436–444

    Article  Google Scholar 

  15. Lessel U, Wellenzohn B, Lilienthal M, Claussen H (2009) Searching Fragment Spaces with Feature Trees. J Chem Inf Model 49:270–279

    Article  CAS  Google Scholar 

  16. Nicolaou CA, Watson I, Wang J (2013) The Lilly Reachable Chemical Space System: bridging chemical synthesis potential with discovery chemistry, sixth jointSheffield Conference on Chemoinformatics

  17. FastROCS v1.4, OpenEye Scientific Software, Inc.: Santa Fe, NM, 2012

  18. Rarey M, Dixon JS (1998) Feature trees: a new molecular similarity measure based on tree matching. J Comput Aided Mol Des 12:471–490

    Article  CAS  Google Scholar 

  19. Michel JB, Shen YK, Aiden AP, Veres A, Gray MK, Pickett JP, Hoiberg D, Clancy D, Norvig P, Orwant J, Pinker S, Nowak MA, Aiden EL (2011) Quantitative analysis of culture using millions of digitized books. Science 331:176–182

    Article  CAS  Google Scholar 

  20. World Drug Index. Reuters, New York

  21. Comprehensive Medicinal Chemistry, Accelrys Software Inc., San Diego

  22. MDDR, Accelrys Software Inc. San Diego

  23. Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) Chapter 12 PubChem: integrated platform of small molecules and biological activities. In: Ralph AWaD, (ed) Annual reports in computational chemistry, Elsevier, pp. 217-241.

  24. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107

    Article  CAS  Google Scholar 

  25. Chambers J, Davies M, Gaulton A, Hersey A, Velankar S, Petryszak R, Hastings J, Bellis L, McGlinchey S, Overington J (2013) UniChem: a unified chemical structure cross-referencing and identifier tracking system. J Chem Inf 5:3

    CAS  Google Scholar 

  26. Integrity, Thomson Reuters, New York

  27. Young D, Martin T, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Comb Sci 27:1337–1345

    Article  CAS  Google Scholar 

  28. Fourches D, Muratov E, Tropsha A (2010) Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model 50:1189–1204

    Article  CAS  Google Scholar 

  29. Olah MM, Bologa CG, Oprea TI (2004) Strategies for compound selection. Curr Drug Discov Technol 1:211–220

    Article  CAS  Google Scholar 

  30. Tiikkainen P, Franke L (2011) Analysis of commercial and public bioactivity databases. J Chem Inf Model 52:319–326

    Article  Google Scholar 

  31. Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inf 29:476–488

    Article  CAS  Google Scholar 

  32. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, Martin YC, Todeschini R, Consonni V, Kuzmin VE, Cramer R, Benigni R, Yang C, Rathman J, Terfloth L, Gasteiger J, Richard A, Tropsha A (2013) QSAR modeling: where have you been? Where are you going to? J Med Chem. doi:10.1021/jm4004285

    Google Scholar 

  33. Todeschini R and Consonni V (2000) Frontmatter. In: Handbook of molecular descriptors. Wiley-VCH, Weinheim, pp i-xxi

  34. Dragon 6, TALETE srl, Via V. Pisani, 13 - 20124 Milano – Italy, 2013

  35. Kramer C & Clark T (2012) New types of descriptors and models in QSAR/QSPR. In: Statistical modelling of molecular descriptors in QSAR/QSPR. Wiley-VCH, Weinheim, pp 293-305

  36. Hopfinger AJ (1980) A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis. J Am Chem Soc 102:7196–7206

    Article  CAS  Google Scholar 

  37. Hopfinger AJ (1981) Inhibition of dihydrofolate reductase: structure-activity correlations of 2,4-diamino-5-benzylpyrimidines based upon molecular shape analysis. J Med Chem 24:818–822

    Article  CAS  Google Scholar 

  38. Hopfinger AJ, Wang S, Tokarski JS, Jin B, Albuquerque M, Madhav PJ, Duraiswami C (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 119:10509–10524

    Article  CAS  Google Scholar 

  39. Hopfinger AJ, Reaka A, Venkatarangan P, Duca JS, Wang S (1999) Construction of a virtual high throughput screen by 4D-QSAR analysis: application to a combinatorial library of glucose inhibitors of glycogen phosphorylase b. J Chem Inf Comput Sci 39:1151–1160

    Article  CAS  Google Scholar 

  40. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic, New York

    Google Scholar 

  41. Beck B, Horn A, Carpenter JE, Clark T (1998) Enhanced 3D-databases: a fully electrostatic database of AM1-optimized structures. J Chem Inf Comput Sci 38:1214–1217

    Article  CAS  Google Scholar 

  42. Beck B, Breindl A, Clark T (2000) QM/NN QSPR models with error estimation: vapor pressure and logP. J Chem Inf Comput Sci 40:1046–1051

    Article  CAS  Google Scholar 

  43. Brüstle M, Beck B, Schindler T, King W, Mitchell T, Clark T (2002) Descriptors, physical properties, and drug-likeness. J Med Chem 45:3345–3355

    Article  Google Scholar 

  44. Ehresmann B, de Groot MJ, Clark T (2005) Surface-integral QSPR models: local energy properties. J Chem Inf Model 45:1053–1060

    Article  CAS  Google Scholar 

  45. Kramer C, Beck B, Kriegl J, Clark T (2008) A composite model for hERG blockade. Chem Med Chem 3:254–265

    Article  CAS  Google Scholar 

  46. Hennemann M, Friedl A, Lobell M, Keldenich J, Hillisch A, Clark T, Göller A (2009) CypScore: quantitative prediction of reactivity toward cytochromes P450 based on semiempirical molecular orbital theory. Chem Med Chem 4:657–669

    Article  CAS  Google Scholar 

  47. Kramer C, Beck B, Clark T (2010) A Surface-Integral Model for Log POW. J Chem Inf Model 50:429–436

    Article  CAS  Google Scholar 

  48. Shahlaei M (2013) Descriptor selection methods in quantitative structure activity relationship studies: a review study. Chem Rev 113:8093–8103

    Article  CAS  Google Scholar 

  49. Breiman L (2001) Random Forests. Mach Learn 5–32

  50. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  51. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408

    Article  CAS  Google Scholar 

  52. Legendre AM (1806) Nouvelles méthodes pour la détermination des orbites des comètes: avec un supplément contenant divers perfectionnements perfectionnements. de ces méthodes et leur application aux deux comètes de 1805. Courcier, Paris

  53. Gauss KF (1857) Theory of the motion of the heavenly bodies moving about the sun in conic sections. Dover, Phoenix

  54. Livingstone DJ (2000) The characterization of chemical structures using molecular properties. A survey. J Chem Inf Comput Sci 40:195–209

    Article  CAS  Google Scholar 

  55. Tarca AL, Carey VJ, Xw C, Romero R, Drâghici S (2007) Machine learning and its applications to biology. PLoS Comput Biol 3:e116

    Article  Google Scholar 

  56. Rasmussen CE (2004) Gaussian processes in machine learning. Lect Notes Comput Sci 3176:63–71

    Article  Google Scholar 

  57. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Google Scholar 

  58. Schneider P, Stutz K, Kasper L, Haller S, Reutlinger M, Reisen F, Geppert T, Schneider G (2011) Target profile prediction and practical evaluation of a Biginelli-type dihydropyrimidine compound library. Pharmaceuticals 4:1236–1247

    Article  CAS  Google Scholar 

  59. Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  60. McNemar Q (1947) Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12:153–157

    Article  CAS  Google Scholar 

  61. Cumming JG, Davis AM, Muresan S, Haeberlein M, Chen H (2013) Chemical predictive modelling to improve compound quality. Nat Rev Drug Discov 12:948–962

    Article  CAS  Google Scholar 

  62. ChemAxon (2013) J Chem 5.11.5 http://www.chemaxon.com

  63. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2013

  64. CORINA—Generation of 3D coordinates, version 3.0, Molecular Networks GmbH, Erlangen, Germany

  65. Deng H, Runger G (2013) Gene selection with guided regularized random forest. Pattern Recogn 46:3483–3489

    Article  Google Scholar 

  66. Friedman JH, Hastie T, Tibshirani R (2008) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22

    Google Scholar 

  67. Schneider G, Neidhart W, Giller T, Schmid G (1999) Scaffold-hopping by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed 38:2894–2896

    Article  CAS  Google Scholar 

  68. Berthold MR, Cebron M, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2007) KNIME: the konstanz information miner. In:Studies in classification, data analysis, and knowledge organization. Springer, Heidelberg

  69. Pipeline Pilot, Version 8.0. Accelrys Software Inc. San Diego: s.n.; 2011

  70. R Core Team (2013) R: A Language and Environment for statistical computing. R Foundation for Statistical Computing. (http://www.R-project.org)

  71. Kriegl JM, Arnhold T, Beck B, Fox T (2005) A support vector machine approach to classify human cytochrome P450 3A4 inhibitors. J Comput Aided Mol Des 19:189–201

    Article  CAS  Google Scholar 

  72. Veith H, Southall N, Huang R, James T, Fayne D, Artemenko N, Shen M, Inglese J, Austin CP, Lloyd DG, Auld DS (2009) Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nat Biotechnol 27:1050–1055

    Article  CAS  Google Scholar 

  73. Cheng F, Yu Y, Shen J, Yang L, Li W, Liu G, Lee PW, Tang Y (2011) Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J Chem Inf Model 51:996–1011

    CAS  Google Scholar 

  74. Sun H, Veith H, Xia M, Austin CP, Huang R (2011) Predictive models for cytochrome P450 isozymes based on quantitative high throughput screening data. J Chem Inf Model 51:2474–2481

    Article  CAS  Google Scholar 

  75. OECD (2005) Principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationship models

  76. OPS (2000) TOPKAT OPS. US patent no. 6 036 349

  77. Sheridan R, Feuston RP, Maiorov VN, Kearsley S (2004) Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Inf Comput Sci 44:1912–1928

    Article  CAS  Google Scholar 

  78. Sahigara F, Ballabio D, Todeschini R, Consonni V (2013) Defining a novel k-nearest neighbours approach to assess the applicability domain of a QSAR model for reliable predictions. J Chem Inf 5:27

    CAS  Google Scholar 

  79. Netzeva TI, Worth A, Aldenberg T, Benigni R, Cronin MT, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts D, Schultz T, Stanton DW, van de Sandt JJ, Tong W, Veith G, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim 33:155–173

    CAS  Google Scholar 

  80. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR applicabilty domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim 33:445–459

    CAS  Google Scholar 

  81. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab 2:37–52

    Article  CAS  Google Scholar 

  82. Worth AP, Bassan A, Gallegos A, Netzeva TI, Patlewicz G, Pavan M, Tsakovska I, Vra-ìko M (2005) The Characterisation of (quantitative) structure-activity relationships: preliminary guidance. Institute for Health and Consumer Protection, Toxicology and Chemical Substances Unit, European Chemical Bureau

  83. Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R (2012) Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17:4791–4810

    Article  CAS  Google Scholar 

  84. Clark RD, Liang W, Waldman M, Fraczkiewicz R (2013) Estimating classification confidence for ensemble models. Sixth Joint Sheffield Conference on Chemoinformatics

  85. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124

    Article  CAS  Google Scholar 

  86. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  Google Scholar 

  87. Duewer DL (1990) The free–Wilson paradigm redux: Significance of the free–Wilson coefficients, insignificance of coefficient ‘uncertainities’ and statistical sins. J Chemometr 4:299–321

    Article  CAS  Google Scholar 

  88. Stardrop, Optibrium Ltd., Cambridge Research, Cambridge, UK

Download references

Acknowledgments

We want to thank our Colleagues from Computational Chemistry, Drug Discovery Support and Medicinal Chemistry. Several of the mentioned approaches have been established together with our colleagues from these departments. Without their continuous commitment, assistance and support most of the described research could have not been done.

B. Beck wants to thank Prof. T. Clark for the very good and productive time starting with the Diploma thesis followed by a PhD thesis and with a short intersection a 18 month PostDoc time.

T. Geppert wants to thank Prof. T. Clark for the productive collaborations since his time as a PhD candidate within Prof. G. Schneider’s lab at the ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Beck.

Additional information

This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, B., Geppert, T. Industrial applications of in silico ADMET. J Mol Model 20, 2322 (2014). https://doi.org/10.1007/s00894-014-2322-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2322-5

Keywords

Navigation