Computational evaluation of factors governing catalytic 2-keto acid decarboxylation

Original Paper
  • 241 Downloads

Abstract

Recent advances in computational approaches for creating pathways for novel biochemical reactions has motivated the development of approaches for identifying enzyme-substrate pairs that are attractive candidates for effecting catalysis. We present an improved structural-based strategy to probe and study enzyme-substrate binding based on binding geometry, energy, and molecule characteristics, which allows for in silico screening of structural features that imbue higher catalytic potential with specific substrates. The strategy is demonstrated using 2-keto acid decarboxylation with various pairs of 2-keto acids and enzymes. We show that this approach fitted experimental values for a wide range of 2-keto acid decarboxylases for different 2-keto acid substrates. In addition, we show that the structure-based methods can be used to select specific enzymes that may be promising candidates to catalyze decarboxylation of certain 2-keto acids. The key features and principles of the candidate enzymes evaluated by the strategy can be used to design novel biosynthesis pathways, to guide enzymatic mutation or to guide biomimetic catalyst design.

Keywords

Catalyst design Decarboxylation Docking Enzyme screening 

Supplementary material

894_2014_2310_MOESM1_ESM.pdf (1.4 mb)
ESM 1(PDF 1435 kb)

References

  1. 1.
    Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Thermodynamic analysis of biodegradation pathways. Biotechnol Bioeng 103:532–541CrossRefGoogle Scholar
  2. 2.
    Hatzimanikatis V, Li CH, Ionita JA, Henry CS, Jankowski MD, Broadbelt LJ (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609CrossRefGoogle Scholar
  3. 3.
    Li CH, Henry CS, Jankowski MD, Ionita JA, Hatzimanikatis V, Broadbelt LJ (2004) Computational discovery of biochemical routes to specialty chemicals. Chem Eng Sci 59:5051–5060CrossRefGoogle Scholar
  4. 4.
    Moura M, Broadbelt L, Tyo K (2013) Computational tools for guided discovery and engineering of metabolic pathways. Methods Mol Biol 985:123–147CrossRefGoogle Scholar
  5. 5.
    Wu D, Wang Q, Assary RS, Broadbelt LJ, Krilov G (2011) A computational approach to design and evaluate enzymatic reaction pathways: application to 1-butanol production from pyruvate. J Chem Inf Model 51:1634–1647CrossRefGoogle Scholar
  6. 6.
    Ugi I, Bauer J, Brandt J, Friedrich J, Gasteiger J, Jochum C, Schubert W (1979) New applications of computers in chemistry. Angew Chem Int Ed Engl 18:111–123CrossRefGoogle Scholar
  7. 7.
    Balaban AT (1985) Applications of graph-theory in chemistry. J Chem Inf Comput Sci 25:334–343CrossRefGoogle Scholar
  8. 8.
    Balaban AT (1985) Graph-theory and theoretical chemistry. THEOCHEM J Molecular Struct 21:117–142CrossRefGoogle Scholar
  9. 9.
    Broadbelt LJ, Stark SM, Klein MT (1994) Computer-generated pyrolysis modeling on-the-fly generation of species, reactions, and rates. Ind Eng Chem Res 33:790–799CrossRefGoogle Scholar
  10. 10.
    Broadbelt LJ, Stark SM, Klein MT (1994) Computer generated reaction networks: on-the-fly calculation of species properties using computational quantum chemistry. Chem Eng Sci 49:4991–5010CrossRefGoogle Scholar
  11. 11.
    Gonzalez-Lergier J, Broadbelt LJ, Hatzimanikatis V (2005) Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways. J Am Chem Soc 127:9930–9938CrossRefGoogle Scholar
  12. 12.
    Klein MT, Neurock M, Broadbelt L, Foley HC (1993) Reaction pathway analysis - global molecular and mechanistic perspectives. Selectivity Catal 517:290–315CrossRefGoogle Scholar
  13. 13.
    Broadbelt LJ, Stark SM, Klein MT (1996) Computer generated reaction modelling: decomposition and encoding algorithms for determining species uniqueness. Comput Chem Eng 20:113–129CrossRefGoogle Scholar
  14. 14.
    Klein MT, Hou G, Quann RJ, Wei W, Liao KH, Yang RSH, Campain JA, Mazurek MA, Broadbelt LJ (2002) BioMOL: a computer-assisted biological modeling tool for complex chemical mixtures and biological processes at the molecular level. Environ Health Perspect 110:1025–1029CrossRefGoogle Scholar
  15. 15.
    Tipton K, Boyce S (2000) History of the enzyme nomenclature system. Bioinformatics 16:34–40CrossRefGoogle Scholar
  16. 16.
    Broadbelt LJ, Pfaendtner J (2005) Lexicography of kinetic modeling of complex reaction networks. AIChE J 51:2112–2121CrossRefGoogle Scholar
  17. 17.
    Henry CS, Jankowski MD, Broadbelt LJ, Hatzimanikatis V (2006) Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys J 90:1453–1461CrossRefGoogle Scholar
  18. 18.
    Henry CS, Broadbelt LJ, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805CrossRefGoogle Scholar
  19. 19.
    Assary RS, Broadbelt LJ (2011) Computational screening of novel thiamine-catalyzed decarboxylation reactions of 2-keto acids. Bioprocess Biosyst Eng 34:375–388CrossRefGoogle Scholar
  20. 20.
    Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106:462–473Google Scholar
  21. 21.
    Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst Biol 4:7. doi: 10.1186/1752-0509-4-7Google Scholar
  22. 22.
    Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104:1086–1097CrossRefGoogle Scholar
  23. 23.
    Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949CrossRefGoogle Scholar
  24. 24.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749CrossRefGoogle Scholar
  25. 25.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem 47:1750–1759CrossRefGoogle Scholar
  26. 26.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196CrossRefGoogle Scholar
  27. 27.
    Hermann JC, Ghanem E, Li YC, Raushel FM, Irwin JJ, Shoichet BK (2006) Predicting substrates by docking high-energy intermediates to enzyme structures. J Am Chem Soc 128:15882–15891CrossRefGoogle Scholar
  28. 28.
    Favia AD, Nobeli I, Glaser F, Thornton JM (2008) Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. J Mol Biol 375:855–874CrossRefGoogle Scholar
  29. 29.
    Kalyanaraman C, Jacobson MP (2010) Studying enzyme-substrate specificity in silico: a case study of the escherichia coli glycolysis pathway. Biochemistry 49:4003–4005CrossRefGoogle Scholar
  30. 30.
    Tyagi S, Pleiss J (2006) Biochemical profiling in silico–predicting substrate specificities of large enzyme families. J Biotechnol 124:108–116CrossRefGoogle Scholar
  31. 31.
    Kalyanaraman C, Bernacki K, Jacobson MP (2005) Virtual screening against highly charged active sites: identifying substrates of alpha-beta barrel enzymes. Biochemistry 44:2059–2071CrossRefGoogle Scholar
  32. 32.
    Song L, Kalyanaraman C, Fedorov AA, Fedorov EV, Glasner ME, Brown S, Imker HJ, Babbitt PC, Almo SC, Jacobson MP, Gerlt JA (2007) Prediction and assignment of function for a divergent N-succinyl amino acid racemase. Nat Chem Biol 3:486–491CrossRefGoogle Scholar
  33. 33.
    Kalyanaraman C, Imker HJ, Fedorov AA, Fedorov EV, Glasner ME, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP (2008) Discovery of a dipeptide epimerase enzymatic function guided by homology modeling and virtual screening. Structure 16:1668–1677CrossRefGoogle Scholar
  34. 34.
    Rakus JF, Kalyanaraman C, Fedorov AA, Fedorov EV, Mills-Groninger FP, Toro R, Bonanno J, Bain K, Sauder JM, Burley SK, Almo SC, Jacobson MP, Gerlt JA (2009) Computation-facilitated assignment of the function in the enolase superfamily: a regiochemically distinct galactarate dehydratase from oceanobacillus iheyensis. Biochemistry 48:11546–11558CrossRefGoogle Scholar
  35. 35.
    Hermann JC, Marti-Arbona R, Fedorov AA, Fedorov E, Almo SC, Shoichet BK, Raushel FM (2007) Structure-based activity prediction for an enzyme of unknown function. Nature 448:775–U772CrossRefGoogle Scholar
  36. 36.
    Xiang DF, Kolb P, Fedorov AA, Meier MM, Fedorov LV, Nguyen TT, Sterner R, Almo SC, Shoichet BK, Raushel FM (2009) Functional annotation and three-dimensional structure of dr0930 from deinococcus radiodurans, a close relative of phosphotriesterase in the amidohydrolase superfamily. Biochemistry 48:2237–2247CrossRefGoogle Scholar
  37. 37.
    Kim J, Xiao H, Bonanno JB, Kalyanaraman C, Brown S, Tang X, Al-Obaidi NF, Patskovsky Y, Babbitt PC, Jacobson MP, Lee Y-S, Almo SC (2013) Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Nature 498:123–126CrossRefGoogle Scholar
  38. 38.
    Lukk T, Sakai A, Kalyanaraman C, Brown SD, Imker HJ, Song L, Fedorov AA, Fedorov EV, Toro R, Hillerich B, Seidel R, Patskovsky Y, Vetting MW, Nair SK, Babbitt PC, Almo SC, Gerlt JA, Jacobson MP (2012) Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily. Proc Natl Acad Sci 109:4122–4127CrossRefGoogle Scholar
  39. 39.
    Schomburg KT, Ardao I, Götz K, Rieckenberg F, Liese A, Zeng A-P, Rarey M (2012) Computational biotechnology: prediction of competitive substrate inhibition of enzymes by buffer compounds with protein–ligand docking. J Biotechnol 161:391–401CrossRefGoogle Scholar
  40. 40.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–U13CrossRefGoogle Scholar
  41. 41.
    Savrasova EA, Kivero AD, Shakulov RS, Stoynova NV (2011) Use of the valine biosynthetic pathway to convert glucose into isobutanol. J Ind Microbiol Biotechnol 38:1287–1294CrossRefGoogle Scholar
  42. 42.
    Assary RS, Broadbelt LJ (2011) 2-Keto acids to branched-chain alcohols as biofuels: application of reaction network analysis and high-level quantum chemical methods to understand thermodynamic landscapes. Comput Theor Chemistry 978:160–165CrossRefGoogle Scholar
  43. 43.
    Kutter S, Weiss MS, Wille G, Golbik R, Spinka M, König S (2009) Covalently bound substrate at the regulatory site of yeast pyruvate decarboxylases triggers allosteric enzyme activation. J Biol Chem 284:12136–12144CrossRefGoogle Scholar
  44. 44.
    Berthold CL, Gocke D, Wood MD, Leeper FJ, Pohl M, Schneider G (2007) Structure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis provides insights into the structural basis for the chemoselective and enantioselective carboligation reaction. Acta Crystallogr D 63:1217–1224CrossRefGoogle Scholar
  45. 45.
    Tittmann K (2009) Reaction mechanisms of thiamin diphosphate enzymes: redox reactions. FEBS J 276:2454–2468CrossRefGoogle Scholar
  46. 46.
    Kutter S, Wille G, Relle S, Weiss MS, Hübner G, König S (2006) The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis. FEBS J 273:4199–4209CrossRefGoogle Scholar
  47. 47.
    Zhang K, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci 105:20653–20658CrossRefGoogle Scholar
  48. 48.
    Schutz A, Sandalova T, Ricagno S, Hubner G, Konig S, Schneider G (2003) Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. Eur J Biochem 270:2312–2321CrossRefGoogle Scholar
  49. 49.
    Dobritzsch D, Konig S, Schneider G, Lu G (1998) High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis. Implications for substrate activation in pyruvate decarboxylases. J Biol Chem 273:20196–20204Google Scholar
  50. 50.
    Siegert P, McLeish MJ, Baumann M, Iding H, Kneen MM, Kenyon GL, Pohl M (2005) Exchanging the substrate specificities of pyruvate decarboxylase from zymomonas mobilis and benzoylformate decarboxylase from pseudomonas putida. Protein Eng Des Sel 18:345–357CrossRefGoogle Scholar
  51. 51.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  52. 52.
    Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10:980–980CrossRefGoogle Scholar
  53. 53.
    Schrödinger (2013) Maestro, version 9.4. Schrödinger, New York, NYGoogle Scholar
  54. 54.
    Schrödinger (2013) LigPrep, version 2.6. Schrödinger, New York, NYGoogle Scholar
  55. 55.
    Schrödinger (2013) MacroModel version 9.9. Schrödinger, New York, NYGoogle Scholar
  56. 56.
    Schrödinger (2013) Glide, version 5.9. Schrödinger, New York, NY Google Scholar
  57. 57.
    Rosenthal RE (1988) GAMS: A user's guide. Scientific, Redwood CityGoogle Scholar
  58. 58.
    Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11:739–747CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Di Wu
    • 1
  • Dajun Yue
    • 1
  • Fengqi You
    • 1
  • Linda J. Broadbelt
    • 1
  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations