Skip to main content
Log in

A rational reduction of CI expansions: combining localized molecular orbitals and selected charge excitations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Based on localized molecular orbitals, the proposed method reduces large configuration interaction (CI) spaces while maintaining agreement with reference values. Our strategy concentrates the numerical effort on physically pertinent CI-contributions and is to be considered as a tool to tackle large systems including numerous open-shells. To show the efficiency of our method we consider two 4-electron parent systems. First, we illustrate our approach by describing the van der Waals interactions in the (H2)2 system. By systematically including local correlation, dispersion and charge transfer mechanisms, we show that 90 % of the reference full CI dissociation energy of the H2 dimer is reproduced using only 3 % of the full CI space. Second, the conformational cis/trans rotation barrier of the butadiene molecule is remarkably reproduced (97 % of the reference value) with less than 1 % of the reference space. This work paves the way to numerical strategies which afford the electronic structure determination of large open-shell systems avoiding the exponential limitation. At the same time, a physical analysis of the contents of the wave function is offered.

We present an approach that allows to construct the CI expansion in a building-block manner based on localized molecular orbitals. The application to two 4-electron parent systems, namely the H2 dimer and butadiene, shows promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andersson, K, Malmqvist, P A, Roos, B O, Sadlej, A J, Wolinski, K (1990) J Phys Chem, 94(14):5483–5488

    Article  CAS  Google Scholar 

  2. Andersson, K, Malmqvist, P A, Roos, B O (1992) J Chem Phys, 96(2):1218–1226

    Article  CAS  Google Scholar 

  3. Angeli, C, Cimiraglia, R, Malrieu, J-P (2002) J Chem Phys, 117(20):9138–9153

    Article  CAS  Google Scholar 

  4. Miralles, J, Castell, O, Caballol, R, Malrieu, J-P (1993) Chem Phys, 172(1):33–43

    Article  CAS  Google Scholar 

  5. Fromager, E (2011). J Chem Phys, 135(24):244106

    Article  Google Scholar 

  6. Savin A (1996) Elsevier, pp 327–357

  7. Leininger, T, Stoll, H, Werner, H-J, Savin, A (1997) Chem Phys Lett, 275(3–4):151–160

    Article  CAS  Google Scholar 

  8. Pollet, R, Savin, A, Leininger, T, Stoll, H (2002) J Chem Phys, 116(4):1250–1258

    Article  CAS  Google Scholar 

  9. Roos, B O, Taylor, P R, Siegbahn, P E M (1980) Chem Phys, 48(2):157–173

    Article  CAS  Google Scholar 

  10. Olsen, J, Roos, B O, Jorgensen, P, Jensen, A H J (1988) J Chem Phys, 89(4):2185–2192

    Article  CAS  Google Scholar 

  11. Ma, D, Manni, G L, Gagliardi, L (2011) J Chem Phys, 135(4):044128

    Article  Google Scholar 

  12. Ivanic, J (2003) J Chem Phys, 119(18):9377–9385

    Article  CAS  Google Scholar 

  13. Ivanic, J (2003) J Chem Phys, 119(18):9364–9376

    Article  CAS  Google Scholar 

  14. Maynau, D, Evangelisti, S, Guihéry, N, Calzado, C J, Malrieu, J-P (2002) J Chem Phys, 116(23):10060–10068

    Article  CAS  Google Scholar 

  15. Boys, S F (1960) Rev Mod Phys, 32:296–299

    Article  CAS  Google Scholar 

  16. Edmiston, C, & Ruedenberg, K (1963) Rev Mod Phys, 35:457–464

    Article  CAS  Google Scholar 

  17. Angeli, C, Evangelisti, S, Cimiraglia, R, Maynau, D (2002) J Chem Phys, 117(23):10525–10533

    Article  CAS  Google Scholar 

  18. Rota, J-B, Calzado, C J, Train, C, Robert, V (2010) The Journal of Chemical Physics, 132(15):154702

    Article  Google Scholar 

  19. Oms, O, Rota, J-B, Norel, L, Calzado, C J, Rousselière, H, Train, C, Robert, V (2010) Eur J Inorg Chem, 2010(34):5373–5378

    Article  Google Scholar 

  20. Calzado, C J, & Maynau, D (2011) The Journal of Chemical Physics, 135(19):194704

    Article  Google Scholar 

  21. Bories, B, Maynau, D, Bonnet, M-L (2007) J Comput Chem, 28:632–643

    Article  CAS  Google Scholar 

  22. Le Guennic, B, Ben Amor, N, Maynau, D, Robert, V (2009) J Chem Theo Comput, 5:1506–1510

    Article  Google Scholar 

  23. Patkowski, K, Cencek, W, Jankowski, P, Szalewicz, K, Mehl, J B, Garberoglio, G, Harvey, A H (2008) J Chem Phys, 129(9): –

  24. Feller, D., & Craig, N C (2009) J Phys Chem A, 113(8):1601–1607

    Article  CAS  Google Scholar 

  25. Karlström, G, Lindh, R, Malmqvist, P-A, Roos, B O, Ryde, U, Veryazov, V, Widmark, P-O, Cossi, M, Schimmelpfennig, B, Neogrady, P, Seijo, L (2003) Comput Mater Sci, 28:222–239

    Article  Google Scholar 

  26. Widmark, P-O, Malmqvist, P-Å, Roos, B O (1990) Theor Chim Acta, 77(5):291–306

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the International Center for Frontier Research in Chemistry (icFRC, Strasbourg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Krah.

Additional information

This paper belongs to a Topical Collection QUITEL 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krah, T., Ben Amor, N., Maynau, D. et al. A rational reduction of CI expansions: combining localized molecular orbitals and selected charge excitations. J Mol Model 20, 2240 (2014). https://doi.org/10.1007/s00894-014-2240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2240-6

Keywords

Navigation