Skip to main content
Log in

Theoretical investigations on the enhancing effect of the cation–π interaction on the halogen bond in the M∙∙∙HCCX∙∙∙NH3 (M = Li+, Na+, Cu+, Ag+, Au+; X = Cl, Br) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The M∙∙∙HCCX∙∙∙NH3 (M = Li+, Na+, Cu+, Ag+, Au+; X = Cl, Br) complexes were designed to study the influence of cation–π interaction on the X∙∙∙N halogen bonds under M05-2X/aug-cc-pVDZ(PP) level. In comparison with the HCCX∙∙∙NH3 complexes, the bond distances of the halogen bonds have decreased, and the interaction energies become more negative. The results show that the X∙∙∙N halogen bonds have been strengthened by the cation−π interactions. For different cations, the enhancing effect is more intensive in the order of Au+ > Cu+ > Ag+ > Li+ > Na+, which indicates that transition metal cations can enhance the halogen bond in a stronger manner. Molecular electrostatic potential and second-order perturbation stabilization energy were calculated to deepen the discussion. In addition, atoms in molecules analysis was performed and the electron density shift was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Chalasinski G, Szczesniak MM (2000) Chem Rev 100:4227–4252

    Article  CAS  Google Scholar 

  2. Rudkevich DM (2004) Angew Chem Int Ed 43:558–571

    Article  CAS  Google Scholar 

  3. Saalfrank RW, Maid H, Scheurer A (2008) Angew Chem Int Ed 47:8794–8824

    Article  CAS  Google Scholar 

  4. Metrangolo P, Resnati G (eds) (2007) Halogen bonding: fundamentals and applications, structure and bonding. Springer, Berlin

    Google Scholar 

  5. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  6. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007) J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  7. Politzer P, Murray JS, Clark T (2010) Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  8. Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8

    Article  CAS  Google Scholar 

  9. Politzer P, Murray JS (2013) Chem Phys Chem 17:278–294

    Article  Google Scholar 

  10. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS (2013) Cryst Eng Comm 15:3145–3150

    Article  CAS  Google Scholar 

  12. Metrangolo P, Resnati G (2001) Chem Eur J 7:511–2519

    Article  Google Scholar 

  13. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Angew Chem Int Ed 39:1782–1786

    Article  CAS  Google Scholar 

  14. Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127

    Article  CAS  Google Scholar 

  15. Loc Nguyen H, Horton PN, Hursthouse MB, Legon AC, Bruce DW (2004) J Am Chem Soc 126:16–17

    Article  Google Scholar 

  16. Legon AC (2010) Phys Chem Chem Phys 12:7736–7747

    Article  CAS  Google Scholar 

  17. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  18. Cavallo G, Metrangolo P, Pilati T, Resnati G, Sansotera M, Terraneo G (2010) Chem Soc Rev 39:3772–3783

    Article  CAS  Google Scholar 

  19. Auffinger P, Hays FA, Westhof E, Ho PS (2004) Proc Natl Acad Sci U S A 101:16789–16794

    Article  CAS  Google Scholar 

  20. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Chem Soc Rev 40:2267–2278

    Article  CAS  Google Scholar 

  21. Lu YX, Shi T, Wang Y, Yang HY, Yan XH, Luo XM, Jiang HL, Zhu WL (2009) J Med Chem 52:2854–2862

    Article  CAS  Google Scholar 

  22. Lu YX, Wang Y, Zhu WL (2010) Phys Chem Chem Phys 12:4543–4551

    Article  CAS  Google Scholar 

  23. Vijay D, Sastry GN (2010) Chem Phys Lett 485:235–242

    Article  CAS  Google Scholar 

  24. Parra RD, Ohlssen J (2008) J Phys Chem A 112:3492–3498

    Article  CAS  Google Scholar 

  25. Egi M, Sarkhel S (2007) Acc Chem Res 40:197–205

    Article  Google Scholar 

  26. Alkorta I, Blanco F, Elguero J (2008) J Phys Chem A 112:6753–6759

    Article  CAS  Google Scholar 

  27. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650

    Article  CAS  Google Scholar 

  28. Alkorta I, Blanco F, Elguero J, Estarellas C, Frontera A, Quinonero D, Deya PM (2009) J Chem Theor Comput 5:1186–1194

    Article  CAS  Google Scholar 

  29. Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2007) New J Chem 31:556–560

    Article  CAS  Google Scholar 

  30. Estarellas C, Frontera A, Quinonero D, Alkorta I, Deya PM, Elguero J (2009) J Phys Chem A 113:3266–3273

    Article  CAS  Google Scholar 

  31. Lankau T, Wu YC, Zou JW, Yu CH (2008) J Theor Comp Chem 7:13–35

    Article  CAS  Google Scholar 

  32. Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052

    Article  CAS  Google Scholar 

  33. Zhao Q, Feng DC, Hao JC (2011) J Mol Model 17:2817–2823

    Article  CAS  Google Scholar 

  34. Lu YX, Liu YT, Li HY, Zhu X, Liu HL, Zhu WL (2012) J Phys Chem A 116:2591–2597

    Article  CAS  Google Scholar 

  35. Li HY, Lu YX, Liu YT, Zhu X, Liu HL, Zhu WL (2012) Phys Chem Chem Phys 14:9948–9955

    Article  CAS  Google Scholar 

  36. Alkorta I, Rozas I, Elguero J (1998) Theor Chem Acc 99:116–123

    Article  CAS  Google Scholar 

  37. Mahadevi AS, Sastry GN (2013) Chem Rev 113:2100–2138

    Article  CAS  Google Scholar 

  38. Li R, Li QZ, Chen JB, Liu ZB, Li WZ (2011) Chem Phys Chem 11:2289–2295

    Article  Google Scholar 

  39. Lu YX, Liu YT, Li HY, Zhu X, Liu HL, Zhu WL (2012) Chem Phys Chem 13:2154–2161

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2006) J Chem Theory Comput 2:1009–1018

    Article  CAS  Google Scholar 

  41. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  42. Wang WZ, Zhang Y, Ji BM, Tian AM (2011) J Chem Phys 134:224303–224307

    Article  Google Scholar 

  43. Zhang Y, Ma N, Wang WZ (2012) Chem Phys Lett 532:27–30

    Article  CAS  Google Scholar 

  44. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  45. Frisch MJ et al. (2009) Gaussian 09 (Revision B.01). Gaussian Inc, Pittsburgh

    Google Scholar 

  46. Reed AE, Curtiss LA, Weinhold F (1998) Chem Rev 88:899–926

    Article  Google Scholar 

  47. Lu T, Chen FW (2012) J Comp Chem 33:580–592

    Article  Google Scholar 

  48. Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, New York

    Google Scholar 

  49. Todd A Keith (2013) AIM All version 13.05.06, aim.tkgristmill.com

  50. Li QZ, Dong X, Jing B, Li WZ, Chen JB, Gong BA, Yu ZW (2010) J Comput Chem 31:1662–1669

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to help of high performance computing centre in Shandong University and reasonable advice of Prof. Feng in Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianguo Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, D. Theoretical investigations on the enhancing effect of the cation–π interaction on the halogen bond in the M∙∙∙HCCX∙∙∙NH3 (M = Li+, Na+, Cu+, Ag+, Au+; X = Cl, Br) complexes. J Mol Model 20, 2235 (2014). https://doi.org/10.1007/s00894-014-2235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2235-3

Keywords

Navigation