On the large σ-hyperconjugation in alkanes and alkenes

  • Judy I-Chia Wu
  • Changwei Wang
  • William Chadwick McKee
  • Paul von Ragué Schleyer
  • Wei Wu
  • Yirong Mo
Original Paper
Part of the following topical collections:
  1. Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Abstract

The conventional view that the σCC and σCH bonds in alkanes and unsaturated hydrocarbons are so highly localized that their non-steric interactions are negligible is scrutinized by the block-localized wavefunction (BLW) method. Even molecules considered conventionally to be “strain free” and “unperturbed” have surprisingly large and quite significant total σ-BLW-delocalization energies (DEs) due to their geminal and vicinal hyperconjugative interactions. Thus, the computed BLW-DEs (in kcal mol−1) for the antiperiplanar conformations of the n-alkanes (CNH2N+2, N = 1-10) range from 11.6 for ethane to 82.2 for n-decane and are 50.9 for cyclohexane and 91.0 for adamantane. Although σ-electron delocalization in unsaturated hydrocarbons usually is ignored, the σ-BLW-DEs (in kcal mol−1) are substantial, as exemplified by D2h ethylene (9.0), triplet D2d ethylene (16.4), allene (19.3), butadiene (19.0), hexatriene (28.3), benzene (28.1), and cyclobutadiene (21.1). While each individual geminal and vicinal hyperconjugative interaction between hydrocarbon σ-bonding and σ-antibonding orbitals tends to be smaller than an individual π conjugative interaction (e.g., 10.2 kcal mol−1 in anti-1,3-butadiene, the presence of many σ-hyperconjugative interactions (e.g., a total of 12 in anti-1,3-butadiene, see text), result in substantial total σ-stabilization energies (e.g., 19.0 kcal mol−1 for butadiene), which may surpass those from the π interactions. Although large in magnitude, σ-electron delocalization energies often are obscured by cancellation when two hydrocarbons are compared. Rather than being strain-free, cyclohexane, adamantane, and diamantane suffer from their increasing number of intramolecular 1,4-C…C repulsions resulting in elongated C–C bond lengths and reduced σ-hyperconjugation, compared to the (skew-free) antiperiplanar n-alkane conformers. Instead of being inconsequential, σ-bond interactions are important and merit consideration.

Keywords

Block localized wavefunction Conjugation Electron delocalization Hauche interactions Hyperconjugation 

References

  1. 1.
    Lewis GN (1916) J Am Chem Soc 38:762–785CrossRefGoogle Scholar
  2. 2.
    Thiel J (1899) J Ann Chem 306:87–142CrossRefGoogle Scholar
  3. 3.
    Mulliken RS (1939) J Chem Phys 7:339–352CrossRefGoogle Scholar
  4. 4.
    Wu JI, Schleyer P v R (2013) Pure Appl Chem 85:921–940CrossRefGoogle Scholar
  5. 5.
    Inagaki S, Ishitani Y, Kakefu T (1994) J Am Chem Soc 116:5954–5958CrossRefGoogle Scholar
  6. 6.
    Mo Y, Gao J (2007) Acc Chem Res 40:113–119CrossRefGoogle Scholar
  7. 7.
    Pophristic V, Goodman L (2001) Nature 411:565–568CrossRefGoogle Scholar
  8. 8.
    Bickelhaupt FM, Baerends EJ (2003) Angew Chem Int Ed 42:4183–4188CrossRefGoogle Scholar
  9. 9.
    Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J (2004) Angew Chem Int Ed 43:1986–1990CrossRefGoogle Scholar
  10. 10.
    Weinhold F (2003) Angew Chem Int Ed 42:4188–4194CrossRefGoogle Scholar
  11. 11.
    McKee WC, Schleyer P v R (2013) J Am Chem Soc 135:13008–13014CrossRefGoogle Scholar
  12. 12.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  13. 13.
    Mo Y, Peyerimhoff SD (1998) J Chem Phys 109:1687–1697CrossRefGoogle Scholar
  14. 14.
    Mo Y, Song L, Lin Y (2007) J Phys Chem A 111:8291–8301CrossRefGoogle Scholar
  15. 15.
    Cappel D, Tullmann S, Krapp A, Frenking G (2005) Angew Chem Int Ed 44:3617–3620CrossRefGoogle Scholar
  16. 16.
    Fernández I, Frenking G (2006) Chem Eur J 12:3617–3629CrossRefGoogle Scholar
  17. 17.
    Hopffgarten MV, Frenking G (2012) For a recent review on the energy decomposition analysis (EDA) method. WIREs Comput Mol Sci 2:43–62CrossRefGoogle Scholar
  18. 18.
    Cooper DL (2002) Theoretical and computational chemistry. Elsevier, Amsterdam Google Scholar
  19. 19.
    Gallup GA (2002) Valence bond methods: theory and applications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  20. 20.
    Shaik SS, Hiberty PC (2008) A chemist’s guide to valence bond theory. Wiley, Hoboken, NJGoogle Scholar
  21. 21.
    Gleicher GL, Schleyer P v R (1967) J Am Chem Soc 89:582–593CrossRefGoogle Scholar
  22. 22.
    Allinger NL, Hirsch JA, Miller MA, Tyminski IJ, Van-Catledge FA (1968) J Am Chem Soc 90:1199–1210CrossRefGoogle Scholar
  23. 23.
    Schleyer P v R, Williams JE, Blanchard KR (1970) J Am Chem Soc 92:2377–2386CrossRefGoogle Scholar
  24. 24.
    Clark T, Knox TM, Mackle H, McKervey MA, Rooney JJ (1975) J Am Chem Soc 97:3835–3836CrossRefGoogle Scholar
  25. 25.
    Truong TN, Gordon MS (1986) J Am Chem Soc 108:1775–1778CrossRefGoogle Scholar
  26. 26.
    Dobbs KD, Hehre WJ (1986) Organometallics 5:2057–2061CrossRefGoogle Scholar
  27. 27.
    Schmidt MW, Truong PN, Gordon MS (1987) J Am Chem Soc 109:5217–5227CrossRefGoogle Scholar
  28. 28.
    Mulliken RS, Rieke CS, Brown WG (1941) J Am Chem Soc 63:41–56CrossRefGoogle Scholar
  29. 29.
    Rogers DW, Matsunaga N, Zavitsas AA, McLafferty FJ, Liebman JF (2003) Org Lett 5:2373–2375Google Scholar
  30. 30.
    Rogers DW, Zavitsas AA, Matsunaga N (2010) J Chem Educ 87:1357–1359Google Scholar
  31. 31.
    Schleyer P v R, Kost D (1988) J Am Chem Soc 110:2105–2109CrossRefGoogle Scholar
  32. 32.
    Song L, Mo Y, Zhang Q, Wu W (2005) J Comput Chem 26:514–521CrossRefGoogle Scholar
  33. 33.
    Song L, Chen Z, Ying F, Song J, Chen X, Su P, Mo Y, Zhang Q, Wu W (2012) Xiamen University, Xiamen 361005, ChinaGoogle Scholar
  34. 34.
    Stoll H, Wagenblast G, Preuss H (1980) Theor Chim Acta 57:169–178CrossRefGoogle Scholar
  35. 35.
    Mehler EL (1981) J Chem Phys 74:6298–6306CrossRefGoogle Scholar
  36. 36.
    Gianinetti E, Raimondi, Tornaghi E (1996) Int J Quantum Chem 60:157–166CrossRefGoogle Scholar
  37. 37.
    Lauvergnat D, Hiberty PC (1997) J Am Chem Soc 119:9478CrossRefGoogle Scholar
  38. 38.
    Bickelhaupt FM, Baerends EJ (2003) Angew Chem Int Ed 42:4183–4188CrossRefGoogle Scholar
  39. 39.
    Mo Y (2009) J Phys Chem A 113:5163–5169CrossRefGoogle Scholar
  40. 40.
    Linares M, Braïda B, Humbel S (2006) J Phys Chem A 110:2505–2509CrossRefGoogle Scholar
  41. 41.
    Linares M, Humbel S, Braïda B (2007) Faraday Discuss 135:273–283CrossRefGoogle Scholar
  42. 42.
    Mo Y, Hiberty PC, Schleyer P v R (2010) Theor Chem Acc 127:27–38CrossRefGoogle Scholar
  43. 43.
    Khaliullin RZ, Bell AT, Head-Gordon M (2006) J Chem Phys 124:204105CrossRefGoogle Scholar
  44. 44.
    Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M (2007) J Phys Chem A 111:8753–8765CrossRefGoogle Scholar
  45. 45.
    Shaik S, Shurki A, Danovich D, Hiberty PC (2001) Chem Rev 101:1501–1539CrossRefGoogle Scholar
  46. 46.
    Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987) J Am Chem Soc 109:363–374CrossRefGoogle Scholar
  47. 47.
    Hiberty PC, Danovich D, Shurki A, Shaik S, Am J (1995) Chem Soc 117:7760–7768CrossRefGoogle Scholar
  48. 48.
    Mo Y, Schleyer P v R (2006) Chem Eur J 12:2009–2020CrossRefGoogle Scholar
  49. 49.
    Wu W, Ma B, Wu J, Schleyer P v R, Mo Y (2009) Chem Eur J 15:9730–9736CrossRefGoogle Scholar
  50. 50.
    Wu JI, Mo Y, Schleyer P v R, Fernández I (2012) J Chem Theory Comput 8:1280–1287CrossRefGoogle Scholar
  51. 51.
    Mo Y, Wu W, Song L, Lin M, Zhang Q, Gao J (2004) Angew Chem Int Ed 43:1986–1990CrossRefGoogle Scholar
  52. 52.
    Mo Y (2010) Nat Chem 2:666–671CrossRefGoogle Scholar
  53. 53.
    Wu JI, Mo Y, Evangelista FA, Schleyer P v R (2012) Chem Commun 48:8437–8439CrossRefGoogle Scholar
  54. 54.
    Wu JI, Fernandez I, Schleyer P v R (2013) J Am Chem Soc 135:315–321CrossRefGoogle Scholar
  55. 55.
    Steinmann SN, Jana DF, Wu JI, Schleyer P v R, Mo Y, Corminboeuf C (2009) Angew Chem Int Ed 48:9828–9833CrossRefGoogle Scholar
  56. 56.
    Jia J-F, Wu H-S, Mo Y (2012) J Chem Phys 136:144315CrossRefGoogle Scholar
  57. 57.
    Cohen N, Benson SW (1993) Chem Rev 93:2419–2438CrossRefGoogle Scholar
  58. 58.
    Computational Chemistry Comparison and Benchmark Database (http://cccbdb.nist.gov)

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Judy I-Chia Wu
    • 1
  • Changwei Wang
    • 2
  • William Chadwick McKee
    • 1
  • Paul von Ragué Schleyer
    • 1
  • Wei Wu
    • 2
  • Yirong Mo
    • 3
  1. 1.Department of ChemistryUniversity of GeorgiaAthensUSA
  2. 2.Department of Chemistry, College of Chemistry and Chemical Engineering, the State Key Laboratory for Physical Chemistry of Solid States, Center for Theoretical ChemistryXiamen UniversityXiamenPeople’s Republic of China
  3. 3.Department of ChemistryWestern Michigan UniversityKalamazooUSA

Personalised recommendations