Skip to main content
Log in

Impact sensitivity and crystal lattice compressibility/free space

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

There is considerable evidence, which we discuss, indicating that compressibility and available free space in the crystal lattice are among the factors that govern the sensitivity of an explosive compound. Expanding and extending earlier work, we demonstrate, for 25 explosives, that there is an overall general tendency for greater impact sensitivity as the estimated free space per molecule increases. More specific relationships can be discerned by looking at subgroups of the compounds. The nitramine sensitivities, most of which are quite high, increase nearly linearly but only very gradually with free space. The nitroaromatics cover a wide range of sensitivities but all have an approximately similar intermediate level of free space. The remaining types of compounds show a reasonable sensitivity–free space relationship with one outlier: FOX-7 (1,1-diamino-2,2-dinitroethylene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iyer S, Slagg N (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity, ch 7. VCH, New York, pp 255–285

    Google Scholar 

  2. Storm CB, Stine JR, Kramer JF (1990) In: Bulusu SN (ed) Chemistry and physics of energetic materials, ch 27. Kluwer, Dordrecht, The Netherlands, pp 605–639

    Chapter  Google Scholar 

  3. Politzer P, Murray JS (2003) In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion, ch 1. Elsevier, Amsterdam, pp 5–23

    Chapter  Google Scholar 

  4. Zeman S (2007) Struct Bond 125:195–271

    Article  CAS  Google Scholar 

  5. Politzer P, Murray JS (2014) In: Brinck T (ed) Green energetic materials. Wiley, Chichester, UK, doi: 10.1002/9781118676448

  6. Politzer P, Murray JS (2014) Adv Quantum Chem 69:1–30

    Article  CAS  Google Scholar 

  7. Armstrong RW, Coffey CS, DeVost VF, Elban WL (1990) J Appl Phys 68:979–984

    Article  CAS  Google Scholar 

  8. Sučeska M (1995) Test methods for explosives. Springer, New York

    Book  Google Scholar 

  9. Doherty RM, Watt DS (2008) Propell Explos Pyrotech 33:4–13

    Article  CAS  Google Scholar 

  10. Elbeih A, Husarova A, Zeman S (2011) Cent Eur J Energ Mater 8:173–182

    CAS  Google Scholar 

  11. Wang Y, Jiang W, Song X, Deng G, Li F (2013) Cent Eur J Energ Mater 10:277–287

    CAS  Google Scholar 

  12. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  13. Kamlet MJ (1976) Proceedings of the 6th Symposium (International) on Detonation, San Diego, CA, Report No, ACR 221, Office of Naval Research, Arlington, VA, pp 312–322

  14. Kamlet MJ, Adolph HG (1979) Propell Explos 4:30–34

    Article  CAS  Google Scholar 

  15. Kamlet MJ, Adolph HG (1981) Proceedings of the Seventh Symposium (International) on Detonation, Report No. NSWCMP-82-334, Naval Surface Warfare Center, Silver Springs, MD, pp 60–67

  16. Tsai DH, Armstrong RW (1994) J Phys Chem 98:10997–11000

    Article  CAS  Google Scholar 

  17. Tarver CM, Chidester SK, Nichols AL III (1996) J Phys Chem 100:5794–5799

    Article  CAS  Google Scholar 

  18. White CT, Barrett JJC, Mintmire JW, Elert ML, Robertson DH (1996) Mat Res Soc Symp Proc 418:277–282

    Article  CAS  Google Scholar 

  19. Dlott DD (2003) In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion. Elsevier, Amsterdam, pp 125–191, ch. 6

    Chapter  Google Scholar 

  20. Shackelford SA (2008) Cent Eur J Energ Mater 5:75–101

    CAS  Google Scholar 

  21. Mader CL (1998) Numerical modeling of explosives and propellants, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  22. Meyer R, Köhler J, Homburg A (2007) Explosives, 6th edn. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  23. Brill TB, James KJ (1993) Chem Rev 93:2667–2692

    Article  CAS  Google Scholar 

  24. Anders G, Borges I Jr (2011) J Phys Chem A 115:9055–9068

    Article  CAS  Google Scholar 

  25. Zeman S (2003) In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion. Elsevier, Amsterdam, pp 25–52, ch 2

    Chapter  Google Scholar 

  26. Stewart RF (1979) Chem Phys Lett 65:335–342

    Article  CAS  Google Scholar 

  27. Klein CL, Stevens ED (1988) In: Liebman JF, Greenberg A (eds) Structure and reactivity. VCH, New York, pp 25–64, ch 2

    Google Scholar 

  28. Politzer P, Murray JS (2002) Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  29. Ayers PW (2007) Chem Phys Lett 438:148–152

    Article  CAS  Google Scholar 

  30. Murray JS, Politzer P (2011) WIREs Comp Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  31. Politzer P, Clark T (2005) Mol Phys 103:891–895

    Article  CAS  Google Scholar 

  32. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  33. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  34. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  35. Kohno Y, Maekawa K, Tsuchioka T, Hashizume T, Imamura A (1994) Combust Flame 96:343–350

    Article  CAS  Google Scholar 

  36. McCrone WC (1999) Chem&Eng News, July 5, p 2

  37. Kitaigorodski AI (1961) Organic chemical crystallography. Consultants Bureau, New York

    Google Scholar 

  38. Dunitz JD, Filippini G, Gavezzotti A (2000) Tetrahedron 56:6595–6601

    Article  CAS  Google Scholar 

  39. Stine JR (1990) J Energ Mater 8:41–73

    Article  CAS  Google Scholar 

  40. Ammon HL (2001) Struct Chem 12:205–212, and references cited

    Article  CAS  Google Scholar 

  41. Eckhardt CJ, Gavezzotti A (2007) J Phys Chem B 111:3430–3437

    Article  CAS  Google Scholar 

  42. Tsai DH (1996) Mat Res Soc Symp Proc 418:281–286

    Article  CAS  Google Scholar 

  43. Rice BM, Mattson W, Trevino SF (1998) Phys Rev E 57:5106–5111

    Article  CAS  Google Scholar 

  44. Kuklja MM, Kunz AB (1999) J Appl Phys 86:4428–4434

    Article  CAS  Google Scholar 

  45. Manaa MR (2003) In: Politzer P, Murray JS (eds) Energetic materials, Part 2. Detonation, combustion, ch 4. Elsevier, Amsterdam

    Google Scholar 

  46. Tarver CM, Urtiew PA, Tran TD (2005) J Energ Mater 23:183–203

    Article  CAS  Google Scholar 

  47. Lemons DS, Lund CM (1999) Am J Phys 67:1105–1108

    Article  CAS  Google Scholar 

  48. Maffre P, Peyrard M (1992) Phys Rev B 45:9551–9561

    Article  Google Scholar 

  49. Dick JJ (1984) Appl Phys Lett 44:859–861

    Article  CAS  Google Scholar 

  50. Dick JJ, Mulford RN, Spencer WJ, Pettit DR, Garcia E, Shaw DC (1991) J Appl Phys 70:3572–3587

    Article  CAS  Google Scholar 

  51. Yoo CS, Holmes NC, Souers PC, Wu CJ, Ree FH, Dick JJ (2000) J Appl Phys 88:70–75

    Article  CAS  Google Scholar 

  52. Kunz AB (1996) Mat Res Soc Symp Proc 418:287–292

    Article  CAS  Google Scholar 

  53. Piermarini GJ, Block S, Miller PJ (1989) J Phys Chem 93:457–462

    Article  CAS  Google Scholar 

  54. Zhang C (2007) J Phys Chem B 111:14295–14298

    Article  CAS  Google Scholar 

  55. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) J Mol Model 17:2569–2574

    Article  Google Scholar 

  56. Kuklja MM (2001) J Phys Chem B 105:10159–10162

    Article  CAS  Google Scholar 

  57. Sharia O, Kuklja MM (2012) J Am Chem Soc 134:11815–11820

    Article  CAS  Google Scholar 

  58. Sharia O, Kuklja MM (2012) J Phys Chem C 116:11077–11081

    Article  CAS  Google Scholar 

  59. Roszak S, Keegstra PB, O’Neal DW, Hariharan PC, Kaufman JJ (1989) Int J Quantum Chem 36:353–368

    Article  CAS  Google Scholar 

  60. Zhang C (2013) J Mol Model 19:477–483

    Article  CAS  Google Scholar 

  61. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  62. Politzer P, Murray JS (1998) J Mol Struct (Theochem) 425:107–114

    Article  Google Scholar 

  63. Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689–697

    Article  CAS  Google Scholar 

  64. Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  65. Politzer P, Martínez J, Murray JS, Concha MC, Toro-Labbé A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  66. Rice BM, Byrd EFC (2013) J Comput Chem 34:2146–2151

    Article  CAS  Google Scholar 

  67. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propell Explos Pyrotech 22:249–255

    Article  CAS  Google Scholar 

  68. Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920–2924

    Article  CAS  Google Scholar 

  69. Wilson WS, Bliss DE, Christian SL, Knight DJ (1990) Explosive Properties of Polynitroaromatics, Report No NWC TP 7073, Naval Weapons Center, China Lake, CA

  70. Gilardi RD, Butcher RJ (2001) Acta Cryst E57:657–658

    Google Scholar 

  71. Pagoria PF, Lee GS, Mitchell AR, Schmidt RD (2002) Thermochim Acta 384:187–204

    Article  CAS  Google Scholar 

  72. Gaussian 09, Revision A.1, Frisch MJ.; Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. (2009) Gaussian Inc, Wallingford, CT

  73. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model 16:1679–1693

    Article  CAS  Google Scholar 

  74. Murray JS, Shields ZP-I, Lane P, Macaveiu L, Bulat FA (2013) J Mol Model 19:2825–2833

    Article  CAS  Google Scholar 

  75. Rowland RS, Taylor R (1996) J Phys Chem 100:7384–7391

    Article  CAS  Google Scholar 

  76. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  77. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Annu Rev Mater Res 31:291–321

    Article  CAS  Google Scholar 

  78. Mathieu D (2013) J Phys Chem A 117:2253–2259

    Article  CAS  Google Scholar 

  79. Politzer P, Concha MC, Grice ME, Murray JS, Lane P (1998) J Mol Struct (Theochem) 452:75–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are pleased to join in honoring Tim Clark, a stimulating collaborator (e.g., refs. 31, 63, and 64) and a good friend. We greatly appreciate the support of this work by the Office of Naval Research, contract number N00014-12-1-0535, Program Officer Dr. Clifford D. Bedford.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Additional information

This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20, 2223 (2014). https://doi.org/10.1007/s00894-014-2223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2223-7

Keywords

Navigation