Skip to main content
Log in

Microhydration of caesium compounds: Cs, CsOH, CsI and Cs2I2 complexes with one to three H2O molecules of nuclear safety interest

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Structure and thermodynamic properties (standard enthalpies of formation and Gibbs free energies) of hydrated caesium species of nuclear safety interest, Cs, CsOH, CsI and its dimer Cs2I2, with one up to three water molecules, are calculated to assess their possible existence in severe accident occurring to a pressurized water reactor. The calculations were performed using the coupled cluster theory including single, double and non-iterative triple substitutions (CCSD(T)) in conjunction with the basis sets (ANO-RCC) developed for scalar relativistic calculations. The second-order spin-free Douglas-Kroll-Hess Hamiltonian was used to account for the scalar relativistic effects. Thermodynamic properties obtained by these correlated ab initio calculations (entropies and thermal capacities at constant pressure as a function of temperature) are used in nuclear accident simulations using ASTEC/SOPHAEROS software. Interaction energies, standard enthalpies and Gibbs free energies of successive water molecules addition determine the ordering of the complexes. CsOH forms the most hydrated stable complexes followed by CsI, Cs2I2, and Cs. CsOH still exists in steam atmosphere even at quite high temperature, up to around 1100 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Insights into the Control of the Release of Iodine, Cesium, Strontium and other Fission Products in the Containment by Severe Accident Management, NEA/CSNI/R(2000)9. Nuclear Energy Agency. http://www.oecd-nea.org/nsd/docs/2000/csni-r2000-9.pdf. Accessed 24 January 2012

  2. Clément B, Cantrel L, Ducros G, Funke F, Herranz L, Rydl A, Weber G, Wren C (2007) State of the Art Report on Iodine Chemistry, NEA/CSNI/R(2007)1. Nuclear Energy Agency. http://www.oecd-nea.org/nsd/docs/2007/csni-r2007-1.pdf. Accessed 24 January 2012

  3. Kissane MP (2009) A review of radionuclide behaviour in the primary system of a very-high-temperature reactor. Nucl Eng Des 239(12):3076–3091

    Article  CAS  Google Scholar 

  4. Pontillon Y, Ducros G (2010) Behaviour of fission products under severe PWR accident conditions: The VERCORS experimental programme. Part 2: Release and transport of fission gases and volatile fission products. Nucl Eng Des 240(7):1853–1866

    Article  CAS  Google Scholar 

  5. Canneaux S, Sokolowski-Gomez N, Henon E, Bohr F, Dóbé S (2004) Theoretical study of the reaction OH + acetone: a possible kinetic effect of the presence of water. PCCP 6(22):5172–5177

    Article  CAS  Google Scholar 

  6. Iuga C, Alvarez-Idaboy JR, Reyes L, Vivier-Bunge A (2010) Can a Single Water Molecule Really Catalyze the Acetaldehyde + OH Reaction in Tropospheric Conditions? J Phys Chem Lett 1(20):3112–3115

    Article  CAS  Google Scholar 

  7. Mansergas A, González J, Ruiz-López M, Anglada JM (2011) The gas phase reaction of carbonyl oxide with hydroxyl radical in presence of water vapor. A theoretical study on the reaction mechanism. Comput Theor Chem 965(2–3):313–320

    Article  CAS  Google Scholar 

  8. Kuczkowski RL, Lide DR Jr (1966) Microwave Spectra of Alkali Hydroxides: Evidence for Linearity of CsOH and KOH. J Chem Phys 44:3131–3132

    Article  CAS  Google Scholar 

  9. Lide DR Jr, Kuczkowski RL (1967) Structure of the Alkali Hydroxides. I. Microwave Spectrum of Gaseous CsOH. J Chem Phys 46:4768–4774

    Article  CAS  Google Scholar 

  10. Acquista N, Abramowitz S, Lide DR (1968) Structure of the Alkali Hydroxides. II. The Infrared Spectra of Matrix-Isolated CsOH and CsOD. J Chem Phys 49(2):780–782

    Article  CAS  Google Scholar 

  11. Lide DR Jr, Matsumura C (1969) Structure of the Alkali Hydroxides. IV. Interpretation of Vibration-Rotation Interactions in CsOH and RbOH and Refinement of Structures. J Chem Phys 50(7):3080–3086

    Article  CAS  Google Scholar 

  12. Story TL, Hebert AJ (1976) Dipole moments of KI, RbBr, RbI, CsBr, and CsI by the electric deflection method. J Chem Phys 64(2):855–858

    Article  CAS  Google Scholar 

  13. Tzu-Min Su R, Riley SJ (1979) Alkali halide photofragment spectra. I. Alkali iodide bond energies and excited state symmetries at 266 nm. J Chem Phys 71(8):3194–3202

    Article  Google Scholar 

  14. Blackburn PE, Johnson CE (1988) Mass Spectrometry Studies of Fission Product Behavior II. Gas phase species in the CsI-CsOH system. J Nucl Mater 154:74–82

    Article  CAS  Google Scholar 

  15. Li R-Z, Liu C-W, Gao YQ, Jiang H, Xu H-G, Zheng W-J (2013) Microsolvation of LiI and CsI in Water: Anion Photoelectron Spectroscopy and ab initio Calculations. J Am Chem Soc 135(13):5190–5199

    Article  CAS  Google Scholar 

  16. Inada Y, Akagane K (1996) Non-Empirical Study of Chemical Reactions Including Fission Products in Severe Light Water Reactor Accidents. J Nucl Sci Technol 33(7):562–568

    Article  CAS  Google Scholar 

  17. Inada Y (1998) Non-Empirical Analysis of the Chemical Reaction of Cesium with Steam; Cs + H2O - > CsOH + H, in Sever Light Water Reactor Accidents. J Nucl Sci Technol 35(4):313–316

    Article  CAS  Google Scholar 

  18. Lee EPF, Wright TG (2003) Theoretical Study of RbOH, CsOH, FrOH, and Their Cations: Geometries, Vibrational Frequencies, and the Ionization Energies. J Phys Chem A 107(26):5233–5240

    Article  CAS  Google Scholar 

  19. Kurosaki Y, Matsuoka L, Yokoyama K, Yokoyama A (2008) Ab initio study on the ground and low-lying excited states of cesium iodide (CsI). J Chem Phys 128(2):024301

    Article  CAS  Google Scholar 

  20. Badawi M, Xerri B, Canneaux S, Cantrel L, Louis F (2012) Molecular structures and thermodynamic properties of 12 gaseous cesium-containing species of nuclear safety interest: Cs2, CsH, CsO, Cs2O, CsX, and Cs2X2 (X = OH, Cl, Br, and I). J Nucl Mater 420(1–3):452–462

    Article  CAS  Google Scholar 

  21. Odde S, Pak C, Lee HM, Kim KS, Mhin BJ (2004) Aqua dissociation nature of cesium hydroxide. J Chem Phys 121(1):204–208

    Article  CAS  Google Scholar 

  22. Kolaski M, Lee HM, Choi YC, Kim KS, Tarakeshwar P, Miller DJ, Lisy JM (2007) Structures, energetics, and spectra of aqua-cesium (I) complexes: An ab initio and experimental study. J Chem Phys 126(7):074302

    Article  CAS  Google Scholar 

  23. Ali SM, De S, Maity DK (2007) Microhydration of Cs+ ion: A density functional theory study on Cs+-(H2O)n clusters (n = 1-10). J Chem Phys 127(4):044303

    Article  CAS  Google Scholar 

  24. Streitwieser A, Liang JC-Y, Jayasree EG, Hasanayn F (2007) Evaluation of Two Computational Models Based on Different Effective Core Potentials for Use in Organocesium Chemistry. J Chem Theory Comput 3(1):127–131

    Article  CAS  Google Scholar 

  25. Cousin F, Dieschbourg K, Jacq F (2008) New capabilities of simulating fission product transport in circuits with ASTEC/SOPHAEROS v. 1.3. Nucl Eng Des 238:2430–2438

    Article  CAS  Google Scholar 

  26. Van Dorsselaere JP, Seropian C, Chatelard P, Jacq F, Fleurot J, Giordano P, Reinke N, Schwinges B, Allelein HJ, Luther W (2009) The ASTEC Integral Code for Severe Accident Simulation. Nucl Technol 165:293–307

    Google Scholar 

  27. Møller C, Plesset MS (1934) Note on an Approximation Treatment for Many-Electron Systems. Phys Rev 46(7):618–622

    Article  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  29. Kendall RA, Dunning JTH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96(9):6796–6806

    Article  CAS  Google Scholar 

  30. Peterson KA, Shepler BC, Figgen D, Stoll H (2006) On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. J Phys Chem A 110(51):13877–13883

    Article  CAS  Google Scholar 

  31. Lim IS, Schwerdtfeger P, Metz B, Stoll H (2005) All-electron and relativistic pseudopotential studies for the group 1 element polarizabilities from K to element 119. J Chem Phys 122(10):104103

    Article  CAS  Google Scholar 

  32. Sudolská M, Cantrel L, Budzák Š, Černušák I (2014) Molecular structures and thermodynamic properties of monohydrated gaseous iodine compounds: Modelling for severe accident simulation. J Nucl Mater 446(1–3):73–80

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation Made Simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  34. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  Google Scholar 

  35. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Article  CAS  Google Scholar 

  36. VandeVondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys 127(11):114105

    Article  CAS  Google Scholar 

  37. Goedecker S, Teter M, Hutter J (1996) Separable dual-space Gaussian pseudopotentials. Phys Rev B 54(3):1703–1710

    Article  CAS  Google Scholar 

  38. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

    Article  CAS  Google Scholar 

  39. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J (2005) Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 167(2):103–128

    Article  CAS  Google Scholar 

  40. Louis F, Černušák I, Canneaux S, Mečiarová K (2011) Atmospheric reactivity of CH3I and CH2I2 with OH radicals: A comparative study of the H- versus I-abstraction. Comput Theor Chem 965(2–3):275–284

    Article  CAS  Google Scholar 

  41. Watts JD, Gauss J, Bartlett RJ (1983) Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree-Fock and other general single determinant reference functions. Energies and analytical gradients. J Chem Phys 98(11):8718–8733

    Article  Google Scholar 

  42. .Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist P-Å, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) MOLCAS 7: The Next Generation. J Comput Chem 31(1):224–247

    Article  CAS  Google Scholar 

  43. Veryazov V, Widmark P-O, Serrano-Andres L, Lindh R, Roos BO (2004) 2MOLCAS as a development platform for quantum chemistry software. Int J Quantum Chem 100(4):626–635

    Article  CAS  Google Scholar 

  44. Karlström G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28(2):222–239

    Article  CAS  Google Scholar 

  45. Roos BO, Lindh R, Malmqvist P-Å, Veryazov V, Widmark P-O (2005) Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J Phys Chem A 108(15):2851–2858

    Article  CAS  Google Scholar 

  46. Widmark P-O, Malmqvist P-Å, Roos BO (1990) Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions I. First row atoms. Theor Chem Acc 77(5):291–306

    Article  CAS  Google Scholar 

  47. Dunning JTH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023

    Article  CAS  Google Scholar 

  48. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566

    Article  CAS  Google Scholar 

  49. Xantheas SS (1996) On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. J Chem Phys 104(21):8821–8824

    Article  CAS  Google Scholar 

  50. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110(13):6158–6170

    Article  CAS  Google Scholar 

  51. Becke AD (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J Chem Phys 107(20):8554–8560

    Article  CAS  Google Scholar 

  52. Schmider HL, Becke AD (1998) Optimized density functionals from the extended G2 test set. J Chem Phys 108(23):9624–9631

    Article  CAS  Google Scholar 

  53. Krishnan R, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14(1):91–100

    Article  CAS  Google Scholar 

  54. Krishnan R, Frisch MJ, Pople JA (1980) Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J Chem Phys 72(7):4244–4245

    Article  CAS  Google Scholar 

  55. Klimeš J, Michaelides A (2012) Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J Chem Phys 137(12):120901

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the support from the Slovak Research and Development Agency under the contract No. APVV-0059-10 and from the Comenius University Grant GUK/38/2013. Part of this work was done under the Research & Development Operational Program funded by the ERDF: Amplification of the Centre of Excellence on Green Chemistry Methods and Processes (CEGreen-II 26240120025). MS thanks SARNET for the support of her stay in Cadarache. A part of this work was carried out using the HELIOS supercomputer system at Computational Simulation Centre of International Fusion Energy Research Centre (IFERC-CSC), Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan. This work has also beneficiated of the HPC resources from GENCI-IDRIS (Grant 2013-project number x2013086731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária Sudolská.

Additional information

This paper belongs to Topical Collection 9th European Conference on Computational Chemistry (EuCo-CC9).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 564 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudolská, M., Cantrel, L. & Černušák, I. Microhydration of caesium compounds: Cs, CsOH, CsI and Cs2I2 complexes with one to three H2O molecules of nuclear safety interest. J Mol Model 20, 2218 (2014). https://doi.org/10.1007/s00894-014-2218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2218-4

Keywords

Navigation