Skip to main content
Log in

Mechanistic aspects of the lycopodine Michael-Claisen domino cyclization

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Michael-Claisen domino (MCD) cyclization used in the lycopodine synthesis by Stork, was evaluated mechanistically using DFT calculations. Calculations suggest that a dianion is not formed, which conforms to classical dianion formation normally requiring strong kinetic bases. Instead ethoxide in ethanol produces a monoanionic species driving the MCD cyclization. This endeavor has opened up potential to expand the scope of this unique reaction and provide educational clarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Scheme 5
Scheme 6
Fig. 2
Scheme 7
Scheme 8
Fig. 3

Similar content being viewed by others

References

  1. Stork G, Kretchmer RA, Schlessinger RH (1968) J Am Chem Soc 90:1647–1648

    Article  CAS  Google Scholar 

  2. Bongini A, Cainelli G, Giacomini D, Martelli G, Panunzio M, Spunta G (1984) Tetrahedron 40:2893–2999

    Article  CAS  Google Scholar 

  3. Cainelli G, Panunzio M, Bongini A, Giacomini D, Danieli R, Martelli G, Spunta G (1985) J Chem Soc Perkin Trans I:203–206

    Article  Google Scholar 

  4. Ishikawa T, Kadoya R, Arai M, Takahashi H, Kaisi Y, Mizuta T, Yoshikai K, Saito S (2001) J Org Chem 66:8000–8009

    Article  CAS  Google Scholar 

  5. Ishikawa T, Kudo K, Kuroyabu K, Uchida S, Kudoh T, Saito S (2008) J Org Chem 73:7498–7508

    Article  CAS  Google Scholar 

  6. Sharma D (2012) Bandna, Shil AK, Singh B, Das P. Synlett 23:1199–1204

    Article  CAS  Google Scholar 

  7. Warren S (1982) Designing Organic Synthesis: A Programmed Introduction to the Synthon Approach. Wiley, Chichester, 1978

    Google Scholar 

  8. Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  10. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  11. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  12. Binning RCJ, Curtiss LA (1990) J Comput Chem 11:1206

    Article  CAS  Google Scholar 

  13. McGrath MP, Radom L (1991) J Chem Phys 94:511

    Article  CAS  Google Scholar 

  14. Curtiss LA, McGrath MP, Blaudeau J-P, Davis NE, Binning RCJ, Radom L (1995) J Chem Phys 103:6104

    Article  CAS  Google Scholar 

  15. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  16. Hay PJ (1977) J Chem Phys 66:4377

    Article  CAS  Google Scholar 

  17. Raghavachari K, Trucks GW (1989) J Chem Phys 91:1062

    Article  Google Scholar 

  18. Klamt A, Schüürmann G (1993) J Chem Soc. Perkin Trans 2:799

    Article  Google Scholar 

  19. Barone V, Cossi MJ (1995) Phys Chem A 102:1995

  20. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

    Article  CAS  Google Scholar 

  21. Weiler L (1970) J Am Chem Soc 92:6702–6704

    Article  CAS  Google Scholar 

  22. Huskin SN, Weiler L (1974) J Am Chem Soc 96:1082–1087

    Article  Google Scholar 

  23. Harris TM, Harris CM (1969) Org React 17:155

    CAS  Google Scholar 

  24. Lacerda V Jr, Constantino MG, da Silva GVJ, Neto AC, Tormena CF (2007) J Mol Struct 828:54–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The University of Queensland and the Friedrich-Schiller-Universität Jena for financial support, and computational time. CMW thanks the Australian Research Council for a Future Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig M. Williams.

Additional information

This paper belongs to a Topical Collection on the occasion of Prof. Tim Clark’s 65th birthday

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eger, W.A., Anders, E. & Williams, C.M. Mechanistic aspects of the lycopodine Michael-Claisen domino cyclization. J Mol Model 20, 2173 (2014). https://doi.org/10.1007/s00894-014-2173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2173-0

Keywords

Navigation