Sumanene and its adsorption properties towards CO, CO2 and NH3 molecules

  • Stevan Armaković
  • Sanja J. Armaković
  • Jovan P. Šetrajčić
  • Stevo K. Jaćimovski
  • Vladimir Holodkov
Original Paper

Abstract

Density functional theory calculations were used in the theoretical investigation of the adsorption properties of sumanene towards molecules considered as common air pollutants: CO, CO2 and NH3. The insignificant perturbation of sumanene after adsorption and the adsorption energies obtained indicate a physisorption mechanism. It was shown that, contrary to carbon nanotubes, sumanene is able to adsorb CO molecules, and that adsorption of CO2 by sumanene is stronger than adsorption of CO2 by C60. To better understand the adsorption characteristics of sumanene, density of states and natural bond order analyses were performed, which showed that chemical interactions exist and that these are more important mostly on the convex side. Better adsorption properties were obtained for the concave side as adsorption is dictated by physisorption mechanisms due to the specific bowl-shaped geometry of sumanene, because of which more negative charge is located precisely on the concave side. Molecular electrostatic potential surfaces were also used in order to better locate the adsorption sites and gain additional details about adsorption.

Figure

Sumanene and its adsorption properties towards CO, CO2 and NH3 molecules; adsorption properties are better from the concave side

Keywords

Sumanene Adsorption DOS/OPDOS NBO and MEP analysis DFT 

Supplementary material

894_2014_2170_MOESM1_ESM.doc (4.5 mb)
ESM 1(DOC 4637 kb)

References

  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  3. 3.
    Pillay K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater 166:1067–1075CrossRefGoogle Scholar
  4. 4.
    Mubarak NM, Sahu JN, Abdullah EC, Jayakumar NS (2014) Removal of heavy metals from wastewater using carbon nanotubes. Sep Purif Rev 43:311–338CrossRefGoogle Scholar
  5. 5.
    Wang P, Cao M, Wang C, Ao Y, Hou J, Qian J (2014) Kinetics and thermodynamics of adsorption of methylene blue by a magnetic graphene-carbon nanotube composite. Appl Surf Sci 290:116–124CrossRefGoogle Scholar
  6. 6.
    Wang L, Fortner JD, Hou L, Zhang C, Kan AT, Tomson MB, Chen W (2013) Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation. Environ Toxicol Chem 32:329–336CrossRefGoogle Scholar
  7. 7.
    Wang L, Huang Y, Kan AT, Tomson MB, Chen W (2012) Enhanced transport of 2,2′,5,5′-polychlorinated biphenyl by Natural organic Matter (NOM) and surfactant-modified fullerene nanoparticles (n C60). Environ Sci Technol 46:5422–5429CrossRefGoogle Scholar
  8. 8.
    Sakurai H, Daiko T, Hirao T (2003) A synthesis of sumanene, a fullerene fragment. Science 301:1878CrossRefGoogle Scholar
  9. 9.
    Armaković S, Armaković SJ, Šetrajčić JP (2013) Hydrogen storage properties of sumanene. Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2013.05.091 Google Scholar
  10. 10.
    Amaya T, Hirao T (2011) A molecular bowl sumanene. Chem Commun 47:10524–10535CrossRefGoogle Scholar
  11. 11.
    Sakurai H, Daiko T, Sakane H, Amaya T, Hirao T (2005) Structural elucidation of sumanene and Generation of its benzylic anions. J Am Chem Soc 127:11580–11581CrossRefGoogle Scholar
  12. 12.
    Vijay D, Sakurai H, Subramanian V, Sastry GN (2012) Where to bind in buckybowls? The dilemma of a metal ion. Phys Chem Chem Phys 14:3057–3065CrossRefGoogle Scholar
  13. 13.
    Deva Priyakumar U, Narahari Sastry G (2003) Cation-π interactions of curved polycyclic systems: M+(M=Li and Na) ion complexation with buckybowls. Tetrahedron Lett 44:6043–6046CrossRefGoogle Scholar
  14. 14.
    Armaković S, Armaković SJ, Šetrajčić JP, Džambas LD (2012) Specificitties of boron disubstituted sumanenes. J Mol Model 19:1153–1166CrossRefGoogle Scholar
  15. 15.
    Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2013) Optical and bowl-to-bowl inversion properties of sumanene substituted on its benzylic positions; a DFT/TD-DFT study. Chem Phys Lett 578:156–161CrossRefGoogle Scholar
  16. 16.
    Scanlon LG, Balbuena PB, Zhang Y, Sandi G, Back CK, Feld WA, Mack J, Rottmayer MA, Riepenhoff JL (2006) Investigation of corannulene for molecular hydrogen storage via computational chemistry and experimentation. J Phys Chem B 110:7688–7694CrossRefGoogle Scholar
  17. 17.
    Bnerjee S, Pillai CGS, Majumder CG (2011) Hydrogen absorption behavior of doped corannulene: A first principles study. Int J Hydrogen Energ 36:4976–4983CrossRefGoogle Scholar
  18. 18.
    Mehta G, Shah SR, Ravikumar K (1993) Towards the design of tricyclopenta [def, jkl, pqr] triphenylene (sumanene): a bowl-shaped hydrocarbon featuring a structural motif present in C60 (buckminsterfullerene). J Chem Soc Chem Commun 12:1006–1008CrossRefGoogle Scholar
  19. 19.
    Peng S, Cho K (2003) Ab Initio study of doped carbon nanotube sensors. Nano Lett 4:513–517CrossRefGoogle Scholar
  20. 20.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRefGoogle Scholar
  21. 21.
    Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804CrossRefGoogle Scholar
  22. 22.
    Seinfeld J, Pandis S (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New YorkGoogle Scholar
  23. 23.
    Dou B, Zhang M, Gao J, Shen W, Sha X (2002) High-temperature removal of NH3, organic sulfur, HCl, and tar component from coal-derived gas. Ind Eng Chem Res 41:4195–4200CrossRefGoogle Scholar
  24. 24.
    Guidance I (1992) Registry of toxic effects of chemical substances. U.S. Environmental Protection Agency, WashingtonGoogle Scholar
  25. 25.
    Beheshtian J, Baei MT, Bagheri Z, Peyghan AA (2012) Co-adsorption of CO molecules at the open ends of MgO nanotubes. Struct Chem 23:1981–1986CrossRefGoogle Scholar
  26. 26.
    Becke AD (1988) Density-fnnctional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  27. 27.
    Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JRT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford CTGoogle Scholar
  29. 29.
    Liu Y, Wilcox J (2011) CO2 adsorption on carbon models of organic constituents of gas shale and coal. Environ Sci Technol 45:809–814CrossRefGoogle Scholar
  30. 30.
    Shirvani BB, Beheshtian J, Esrafili MD, Hadipour NL (2010) FT study of NH3 adsorption on the (5,0), (8,0), (5,5) and (6,6) single-walled carbon nanotubes. Calculated binding energies, NMR and NQR parameters. Physica B 405:1455–1460CrossRefGoogle Scholar
  31. 31.
    Da Silva LB, Fagan SB, Mota R (2004) Ab Initio study of deformed carbon nanotube sensors for carbon monoxide molecules. Nano Lett 4:65–67CrossRefGoogle Scholar
  32. 32.
    Zhao J-X, Ding Y–H (2008) Theoretical study of the interactions of carbon monoxide with Rh decorated (8,0) single wall CNT. Mater Chem Phys 110:411–416CrossRefGoogle Scholar
  33. 33.
    Azizi K, Majid Hashemianzadeh S, Bahramifar S (2011) Density functional theory study of carbon monoxide adsorption on the inside and outside of the armchair single-walled carbon nanotubes. Curr Appl Phys 11:776–782CrossRefGoogle Scholar
  34. 34.
    Bai L, Zhou Z (2007) Computational study of B- or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Carbon 45:2105–2110CrossRefGoogle Scholar
  35. 35.
    Leenaerts O, Partoens B, Peeters FM (2008) Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys Rev B 77:125416CrossRefGoogle Scholar
  36. 36.
    Mitschker J, Klüner T (2012) New Insight into CO Photodesorption from C60. J Phys Chem A 116:11211–11218CrossRefGoogle Scholar
  37. 37.
    Cinke M, Li J, Bauschlicher CW Jr, Ricca A, Meyyappan M (2003) CO2 adsorption in single-walled carbon nanotubes. Chem Phys Lett 376:761–766CrossRefGoogle Scholar
  38. 38.
    Lee KJ, Kim SJ (2013) Theoretical investigation of CO2 adsorption on graphene. Bull Korean Chem Soc 34:3022–3026CrossRefGoogle Scholar
  39. 39.
    Gao B, Zhao J-X, Cai Q–H, Wang X-G, Wang X-Z (2011) Doping of Calcium in C60 Fullerene for Enhancing CO2 Capture and N2O Transformation: A Theoretical Study. J Phys Chem A 115:9969–9976CrossRefGoogle Scholar
  40. 40.
    Azizi K, Karimpanah M (2013) Computational study of Al- or P-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Appl Surf Sci 285(PARTB):102–109CrossRefGoogle Scholar
  41. 41.
    Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091CrossRefGoogle Scholar
  42. 42.
    Hazarika KK, Baruah NC, Deka RC (2009) Molecular structure and reactivity of antituberculosis drug molecules isoniazid, pyrazinamide, and 2-methylheptylisonicotinate: a density functional approach. Struct Chem 20:1079–1085CrossRefGoogle Scholar
  43. 43.
    Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  44. 44.
    Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in extended structures. VCH Publishers, New YorkGoogle Scholar
  45. 45.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845CrossRefGoogle Scholar
  46. 46.
    Kose E, Atac A, Karabacak M, Karaca C, Eskici M, Karanfil A (2012) Spectrochim Acta A 97:435–448CrossRefGoogle Scholar
  47. 47.
    Chen M, Waghmare UV, Friend CM, Kaxiras E (1998) A density functional study of clean and hydrogen-covered α-MoO3(010): Electronic structure and surface relaxation. J Chem Phys 109:6854–6860CrossRefGoogle Scholar
  48. 48.
    Grigoriy A. Zhurko, Denis A. Zhurko, Chemcraft. <http://www.chemcraftprog.com>
  49. 49.
    Okulik N, Jubert AH (2004) Theoretical study on the structure and reactive sites of non-steroidal anti-inflammatory drugs. J Mol Struct (THEOCHEM) 682:55–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stevan Armaković
    • 1
  • Sanja J. Armaković
    • 2
  • Jovan P. Šetrajčić
    • 1
  • Stevo K. Jaćimovski
    • 3
  • Vladimir Holodkov
    • 4
  1. 1.Department of Physics, Faculty of SciencesUniversity of Novi SadNovi SadRepublic of Serbia
  2. 2.Department of Chemistry, Biochemistry and Environmental Protection, Faculty of SciencesUniversity of Novi SadNovi SadRepublic of Serbia
  3. 3.Academy of Criminalistic and Police StudiesBelgradeRepublic of Serbia
  4. 4.Faculty of Sport and Tourism (TIMS)Educons UniversityNovi SadSerbia

Personalised recommendations