Skip to main content
Log in

Stimulation of N−glycoside transfer in deoxythymidine glycol: mechanism of the initial step in base excision repair

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Thymine glycol (Tg), a toxic oxidative DNA lesion, is preferentially removed by endonuclease III (Endo III). To investigate the glycosylase activity of Endo III, the N−glycoside transfer mechanism in deoxythymidine glycol (dTg) is examined in this theoretical study based on the BHandHLYP/6−311++G(d,p) level of theory. Two controversial mechanisms were characterized, i.e., the displacement and endocyclic mechanisms. For each mechanism, three types of reaction models were established, including the direct reaction, local microhydration and protonated models. The calculated results indicate that (i) all three reaction models favor the displacement mechanism more than the endocyclic mechanism; (ii) the local microhydration model allows for discrete proton transfer and contributes to the reduction of activation energies, nevertheless, large activation energies are still involved; (iii) the O4′−protonated endocyclic model can efficiently promote the nucleophilic attack of lysine residue and an amino acid residue other than the nucleophilic lysine should be responsible for the opening of the sugar ring; (iv) the O2−protonated displacement model facilitates the leaving group (Tg) stabilization and therefore is the preferred mechanism for the N−glycoside transfer of dTg, whose activation energy of 17.7 kcal mol−1 is in good agreement with the experimental estimate of 19.0 kcal mol−1. As a result, the protonation of nucleobase plays a significant role in predicting the preferred glycosylase mechanism. Our findings can propose appropriate mechanisms for future large−scale enzymatic modeling of Endo III and provide more fundamental information about the important residues that may be included in the enzyme−catalyzed reactions.

N−glycoside transfer in deoxythymidine glycol

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cathcart R, Schwiers E, Saul RL, Ames BN (1984) Proc Natl Acad Sci U S A 81:5633–5637

    Article  CAS  Google Scholar 

  2. Wallace SS (2002) Free Radic Biol Med 33:1–14

    Article  CAS  Google Scholar 

  3. Zuo S, Boorstein RJ, Teebor GW (1995) Nucleic Acids Res 25:3239–3243

    Article  Google Scholar 

  4. Basu AK, Loechler EL, Leadon SA, Essigmann JM (1989) Proc Natl Acad Sci U S A 86:7677–7681

    Article  CAS  Google Scholar 

  5. Clark JM, Beardsley GP (1987) Biochemistry 26:5398–5403

    Article  CAS  Google Scholar 

  6. Ide H, Kow YW, Wallace SS (1985) Nucleic Acids Res 13:8035–8052

    Article  CAS  Google Scholar 

  7. Slupphaug G, Kavli B, Krokan HE (2003) Mutat Res 531:231–251

    Article  CAS  Google Scholar 

  8. Gros L, Saparbaev MK, Laval J (2002) Oncogene 21:8905–8925

    Article  CAS  Google Scholar 

  9. Fromme JC, Verdine GL (2003) EMBO J 22:3461–3471

    Article  CAS  Google Scholar 

  10. Miller H, Fernandes AS, Zaika E, McTigue MM, Torres MC, Wente M, Iden CR, Grollman AP (2004) Nucleic Acids Res 32:338–345

    Article  CAS  Google Scholar 

  11. Marenstein DR, Ocampo MTA, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW (2001) J Biol Chem 276:21242–21249

    Article  CAS  Google Scholar 

  12. Ocampo MTA, Chaung W, Marenstein DR, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP, Teebor GW (2002) Mol Cell Biol 22:6111–6121

    Article  CAS  Google Scholar 

  13. Dou H, Mitra S, Hazra TK (2003) J Biol Chem 278:49679–49684

    Article  CAS  Google Scholar 

  14. Rosenquist TA, Zaika E, Fernandes AS, Zharkov DO, Miller H, Grollman AP (2003) DNA Repair 2:581–591

    Article  CAS  Google Scholar 

  15. Wallace SS, Bandaru V, Kathe SD, Bond JP (2003) DNA Repair 2:441–453

    Article  CAS  Google Scholar 

  16. Melamede RJ, Hatahet Z, Kow YW, Ide H, Wallace SS (1994) Biochemistry 33:1255–1264

    Article  CAS  Google Scholar 

  17. Roldan-Arjona T, Anselmino C, Lindahl T (1996) Nucleic Acids Res 24:3307–3312

    Article  CAS  Google Scholar 

  18. Lustig MJ, Cadet J, Boorstein RJ, Teebor GW (1992) Nucleic Acids Res 20:4839–4845

    Article  CAS  Google Scholar 

  19. Asagoshi K, Odawara H, Nakano H, Miyano T, Terato H, Ohyama Y, Seki S, Ide H (2000) Biochemistry 39:11389–11398

    Article  CAS  Google Scholar 

  20. Katafuchi A, Nakano T, Masaoka A, Terato H, Iwai S, Hanaoka F, Ide H (2004) J Biol Chem 279:14464–14471

    Article  CAS  Google Scholar 

  21. Ikeda S, Biswas T, Roy R, Izumi T, Boldogh I, Kurosky A, Sarker AH, Seki S, Mitra S (1998) J Biol Chem 273:21585–21593

    Article  CAS  Google Scholar 

  22. Ocampo-Hafalla MT, Altamirano A, Basu AK, Chan MK, Ocampo JE, Jr Cummings A, Boorstein RJ, Cunningham RP (2006) Teebor GW. DNA Repair (Amst) 5:444–454

    Article  CAS  Google Scholar 

  23. Berti PJ, McCann JAB (2006) Chem Rev 106:506–555

    Article  CAS  Google Scholar 

  24. Thayer MM, Ahern H, Xing D, Cunningham RP, Tainer JA (1995) EMBO J 14:4108–4120

    CAS  Google Scholar 

  25. Kuo CF, McRee DE, Fisher CL, O’Handley SF, Cunningham RP, Tainer JA (1992) Science 258:434–440

    Article  CAS  Google Scholar 

  26. Dizdaroglu M, Karahalil B, Senturker S, Buckley TJ, Roldan-Arjona T (1999) Biochemistry 38:243–246

    Article  CAS  Google Scholar 

  27. Purmal AA, Rabow LE, Lampman GW, Cunningham RP, Kow YW (1996) Mutat Res 364:193–207

    Article  CAS  Google Scholar 

  28. Kow YW, Wallace SS (1987) Biochemistry 26:8200–8206

    Article  CAS  Google Scholar 

  29. Zharkov DO, Golan G, Gilboa R, Fernandes AS, Gerchman SE, Kycia JH, Rieger RA, Grollman AP, Shoham G (2002) EMBO J 21:789–800

    Article  CAS  Google Scholar 

  30. Schyman P, Danielsson J, Pinak M, Laaksonen A (2005) J Phys Chem A 109:1713–1719

    Article  CAS  Google Scholar 

  31. Shim EJ, Przybylski JL, Wetmore SD (2010) J Phys Chem B 114:2319–2326

    Article  CAS  Google Scholar 

  32. Osakabe T, Fujii Y, Hata M, Tsuda M, Neya S, Hoshino T (2004) Chem-Bio Inform J 4:73–92

    Article  CAS  Google Scholar 

  33. Calvaresi M, Bottoni A, Garavelli M (2007) J Phys Chem B 111:6557–6570

    Article  CAS  Google Scholar 

  34. Kellie JL, Wetmore SD (2012) J Phys Chem B 116:10786–10797

    Article  CAS  Google Scholar 

  35. Šebera J, Trantírek L, Tanaka Y, Sychrovský V (2012) J Phys Chem B 116:12535–12544

    Article  CAS  Google Scholar 

  36. Lenz SAP, Kellie JL, Wetmore SD (2012) J Phys Chem B 116:14275–14284

    Article  CAS  Google Scholar 

  37. Vaishnav Y, Holwitt E, Swenberg C, Lee HC, Kan LS (1991) J Biomol Struct Dyn 8:935–951

    Article  CAS  Google Scholar 

  38. Kao JY, Goljer I, Phan TA, Bolton PH (1993) J Biol Chem 268:17787–17793

    CAS  Google Scholar 

  39. Iwai S (2000) Angew Chem, Int Ed 39:3874–3876

    Article  CAS  Google Scholar 

  40. Brown KL, Adams T, Jasti VP, Basu AK, Stone MP (2008) J Am Chem Soc 130:11701–11710

    Article  CAS  Google Scholar 

  41. Chen ZQ, Zhang CH, Xue Y (2009) J Phys Chem B 113:10409–10420

    Article  CAS  Google Scholar 

  42. Dodson ML, Michaels ML, Lloyd RS (1994) J Biol Chem 269:32709–32712

    CAS  Google Scholar 

  43. Csontos J, Palermo N, Murphy R, Lovas S (2008) J Comput Chem 29:1344–1352

    Article  CAS  Google Scholar 

  44. Yu WB, Liang L, Lin ZJ, Ling SL, Haranczyk M, Gutowski M (2008) J Comput Chem 30:589–600

    Article  CAS  Google Scholar 

  45. Durant JL (1996) Chem Phys Lett 256:595–602

    Article  CAS  Google Scholar 

  46. Zhang Q, Bell R, Truong TN (1995) J Phys Chem A 99:592–600

    Article  CAS  Google Scholar 

  47. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  48. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O¨ , Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09 revision D.01. Gaussian, Inc, Wallingford, CT

Download references

Acknowledgments

This work was supported by grants from National Natural Science Foundation of China (Grant Nos. 21203153 and 21173151), Science & Technology Department (Grant No. 2011JY0136) and Department of Education (Grant No. 12ZA174) of Sichuan Province and China West Normal University (Grant No. 11B002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-qin Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

894_2014_2168_MOESM1_ESM.doc

Optimized Cartesian coordinates and geometrical structures of all stationary points along the potential energy profiles investigated at the BHandHLYP/6−311++G(d,p) level of theory. (DOC 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Zq., Liu, Xq. & Xue, Y. Stimulation of N−glycoside transfer in deoxythymidine glycol: mechanism of the initial step in base excision repair. J Mol Model 20, 2168 (2014). https://doi.org/10.1007/s00894-014-2168-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2168-x

Keywords

Navigation