Skip to main content
Log in

A combined experimental and computational study of the esterification reaction of glycerol with acetic acid

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work describes theoretical and experimental studies on glycerol esterification to obtain acetins focusing on the obtained isomers. The reaction of glycerol with acetic acid was carried out on Amberlyst 36 wet. Density functional theory calculations on the level of M06-2X functional and 6-311+G(d,p) basis set are carried out and the most stable structures of the reactants and products are located by considering a large number of conformers. The thermodynamics is discussed in terms of the calculated reaction Gibbs free energy. The AIM theory was used to characterize reactants and products. The glycerol esterification with acetic acid is found to be thermodynamically favored, with exothermal property. These agree well with experiments and allow us to explain the relative selectivity of products.

Glycerol esterification with acetic acid

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  2. Liao X, Zhu Y, Wang SG, Li Y (2009) Producing triacetylglycerol with glycerol by two steps: esterification and acetylation. Fuel Process Technol 90:988–993

    Article  CAS  Google Scholar 

  3. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Article  CAS  Google Scholar 

  4. Klepácová K, Mravec D, Kaszonyi A, Bajus M (2007) Etherification of glycerol and ethylene glycol by isobutylene. Appl Catal A 328:1–13

    Article  CAS  Google Scholar 

  5. Klepácová K, Mravec D, Bajus M (2005) tert-Butylation of glycerol catalysed by ion-exchange resins. Appl Catal A 294:141–147

    Article  CAS  Google Scholar 

  6. Noureddini H, Daily WR, Hunt BA (1998) Production of ethers of glycerol from crude glycerol-the by-product of biodiesel production. Chem Biomol Eng Res 13:121–129

    Google Scholar 

  7. Delfort B, Durand I, Jaecker A, Lacome T, Montagne X, Paille F (2005) Diesel fuel compounds containing glycerol acetals. Institut Francais du Petrole. US patent: US6890364

  8. Delgado PJ (2009) Procedure to obtain biodiesel fuel with improved properties at low temperature. I.M.S.A, US patent: US7637969 B2

  9. Melero JA, Vicente G, Morales G, Paniagua M, Bustamante J (2010) Oxygenated compounds derived from glycerol for biodiesel formulation: influence on EN 14214 quality parameters. Fuel 89:2011–2018

    Article  CAS  Google Scholar 

  10. De Torres M, Jiménez-Osés G, Mayoral JA, Pires E, de los Santos M (2012) Glycerol ketals: synthesis and profits in biodiesel blends. Fuel 94:614–616

    Article  CAS  Google Scholar 

  11. Rahmat N, Abdullah AZ, Mohamed AR (2010) Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: a critical review. Renew Sust Energ Rev 14(3):987–1000

    Article  CAS  Google Scholar 

  12. Nebel B, Mittelbach M, Uray G (2008) Determination of the composition of acetylglycerol mixtures by 1H NMR followed by GC investigation. Anal Chem 80:8712–8716

    Article  CAS  Google Scholar 

  13. Lal SND, O’Connor CJ, Eyres L (2006) Application of emulsifiers/stabilizers in dairy products of high rheology. Adv Colloid Interf Sci 123–126:433–437

    Article  CAS  Google Scholar 

  14. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30

    Article  CAS  Google Scholar 

  15. Zhou C-H, Beltramini JN, Fan Y-X, Lu GQ (2008) Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem Soc Rev 37:527–549

    Article  CAS  Google Scholar 

  16. Guerrero-Perez MO, Rosas JM, Bedia J, Rodriguez-Mirasol J, Cordero T (2009) Recent inventions in glycerol transformations and processing, recent pat. Chem Eng 2:11–21

    CAS  Google Scholar 

  17. Troncea SB, Wuttke S, Kemnitz E, Coman SM, Parvulescu VI (2011) Hydroxylated magnesium fluorides as environmentally friendly catalysts for glycerol acetylation. Appl Catal B 107:260–267

    Article  CAS  Google Scholar 

  18. Dosuna-Rodríguez I, Gaigneaux EM (2012) Glycerol acetylation catalysed by ion exchange resins. Catal Today 195:14–21

    Article  CAS  Google Scholar 

  19. Izquierdo JF, Montiel M, Palés I, Outón PR, Galán M, Jutglar L, Villarrubia M, Izquierdo M, Hermo MP, Ariza X (2012) Fuel additives from glycerol etherification with light olefins: state of the art. Renew Sust Energ Rev 16:6717–6724

    Article  CAS  Google Scholar 

  20. Gonçalves VLC, Pinto BP, Silva JC, Mota CJA (2008) Acetylation of glycerol catalyzed by different solid acids. Catal Today 133–135:673–677

    Article  CAS  Google Scholar 

  21. Melero JA, van Grieken R, Morales G, Paniagua M (2007) Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Energy Fuel 21:1782–1791

    Article  CAS  Google Scholar 

  22. Díaz I, Márquez-Alvarez C, Mohino F, Pérez-Pariente J, Sastre E (2000) Combined alkyl and sulfonic acid functionalization of MCM-41-type silica. Part II. Esterification of glycerol with fatty acids. J Catal 193:295–302

    Article  Google Scholar 

  23. Díaz I, Mohino F, Pérez-Pariente J, Sastre E (2003) Synthesis of MCM-41 materials functionalised with dialkylsilane groups and their catalytic activity in the esterification of glycerol with fatty acids. Appl Catal A 242:161–169

    Article  CAS  Google Scholar 

  24. Diaz I, Mohino F, Blasco T, Sastre E, Pérez-Pariente J (2005) Influence of the alkyl chain length of HSO3-R-MCM-41 on the esterification of glycerol with fatty acids. Microporous Mesoporous Mater 80:33–42

    Article  CAS  Google Scholar 

  25. Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catal Commun 10:481–484

    Article  CAS  Google Scholar 

  26. Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro (2011) Acetylation of glycerol over heteropolyacids supported on activated carbon. Catal Commun 12:573–576

    Article  CAS  Google Scholar 

  27. Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Glycerol acetylation over dodecatungstophosphoric acid immobilized into a silica matrix as catalyst. Appl Catal B 91:416–422

    Article  CAS  Google Scholar 

  28. Rezayatand M, Ghaziaskar HS (2009) Continuous synthesis of glycerol acetates in supercritical carbon dioxide using Amberlyst 15®. Green Chem 11:710–715

    Article  CAS  Google Scholar 

  29. Zhou L, Nguyen T-H, Adesina AA (2012) The acetylation of glycerol over amberlyst-15: kinetic and product distribution. Fuel Process Technol 104:310–318

    Article  CAS  Google Scholar 

  30. Zhou L, Al-Zaini E, Adesina AA (2013) Catalytic characteristics and parameters optimization of the glycerol acetylation over solid acid catalysts. Fuel 103:617–625

    Article  CAS  Google Scholar 

  31. Liao X, Zhu Y, Wang S-G, Chen H, Li Y (2010) Theoretical elucidation of acetylating glycerol with acetic acid and acetic anhydride. Appl Catal B 94:64–70

    Article  CAS  Google Scholar 

  32. Jamróz ME, Jarosz M, Witowska-Jarosz J, Bednarek E, Tęcza W, Jamróz MH, Dobrowolski JC, Kijeński J (2007) Mono-, di-, and tri-tert-butyl ethers of glycerol: a molecular spectroscopic study Original. Spectrochim Acta A 67:980–988

    Article  CAS  Google Scholar 

  33. Bader RFW (1990) Atoms in molecules—a quantum theory. Clarendon, Oxford

    Google Scholar 

  34. Bader RFW, Popelier PLA, Keith TA (1994) Theoretical definition of a functional group and the molecular orbital paradigm. Angew Chem Int Ed Engl 33:620–631

    Article  Google Scholar 

  35. Popelier P (2000) Atoms in molecules-an introduction. Prentice Hall, Harlow

    Google Scholar 

  36. Callam CS, Singer SJ, Lowary TL, Hadad CM (2001) Computational analysis of the potential energy surfaces of glycerol in the gas and aqueous phases: effects of level of theory, basis set, and solvation on strongly intramolecularly hydrogen-bonded systems. J Am Chem Soc 123:11743–11754

    Article  CAS  Google Scholar 

  37. HyperChem (TM), Hypercube, Inc., Gainesville, FL

  38. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  39. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  40. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  41. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  42. Parr R, Weitao Y (1994) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  43. Frisch MJ et al. (2009) Gaussian 09, Revision A.1, Gaussian Inc., Wallingford, CT.

  44. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  45. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  46. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  47. Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  48. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  Google Scholar 

  49. Miertus S, Tomasi J (1982) Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem Phys 65:239–245

    Article  CAS  Google Scholar 

  50. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  51. Keith TA. AIMAll (Version 13.02.26), in TK Gristmill Software. 2012: Overland Park KS (aim.tkgristmill.com)

  52. Maccaferri G, Caminati W, Favero PG (1997) Free jet investigation of the rotational spectrum of glycerol. J Chem Soc Faraday Trans 93:4115–4117

    Article  CAS  Google Scholar 

  53. Champeney DC, Joarder RN, Dore JC (1986) Structural studies of liquid D-glycerol by neutron diffraction. Mol Phys 58:337–347

    Article  CAS  Google Scholar 

  54. Garawi M, Dore JC, Champeney DC (1987) Structural studies of liquid D-glycerol II. Molecular conformation and long range correlations. Mol Phys 62:475–487

    Article  CAS  Google Scholar 

  55. Koningsveld HV (1968) The crystal structure of glycerol and its conformation. Recl Trav Chem Pays-Bas 87:243–254

    Article  Google Scholar 

  56. Limpanuparb T, Punyain K, Tantirungrotechai Y (2010) A DFT investigation of methanolysis and hydrolysis of triacetin. J Mol Struct THEOCHEM 955:23–32

    Article  CAS  Google Scholar 

  57. Lilja J, Murzin D, Yu ST, Aumo J, Mäki-Arvela P, Sundell M (2002) Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the Taft Equation. J Mol Catal A 182–183:555–563

    Article  Google Scholar 

  58. Kirumakki SR, Nagaraju N, Chary KVR (2006) Esterification of alcohols with acetic acid over zeolites Hβ, HY and HZSM5. Appl Catal A 299:185–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Chaco Austral (UNCAUS) for financial support. NBO and CLP are members of the Scientific Research Career of CONICET. GAB is a fellowship of CONICET. The contribution of Dr. Reinaldo Pis Diez for extensive discussion on the subject and generous help in manuscript preparation is also gratefully acknowledged. Universidad Nacional de Catamarca (UNCA) is also appreciated for their computation supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Beatriz Okulik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

B3LYP/6-31+G(d,p) molecular geometries for all compounds considered in this work are provided in xyz coordinates. Table S1 gathers Gibbs free energies of reactants and products for acetylating glycerol as determined with M06-2X/6-311+G(d,p) and including solvent effect (PDF 248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedogni, G.A., Padró, C.L. & Okulik, N.B. A combined experimental and computational study of the esterification reaction of glycerol with acetic acid. J Mol Model 20, 2167 (2014). https://doi.org/10.1007/s00894-014-2167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2167-y

Keywords

Navigation