Small cobalt clusters encapsulated inside Si30C30 nanocages: electronic and magnetic properties

Original Paper
  • 149 Downloads

Abstract

We investigated the structural, electronic, and magnetic properties of small Con clusters (n = 2–6) when they were endohedrally doped into Si30C30 nanocages using ab initio calculations based on density functional theory. Two different spin-polarized functionals based on the generalized gradient and local density approximations were used to characterize Con@Si30C30. It was found that the Con clusters encapsulated inside Si30C30 nanocages can form stable structures due to their significant binding energies. Among the various encapsulated clusters studied, the Co4 cluster was the most stable in a Si30C30 nanocage. We also found that the magnetic moments of the clusters decreased during the encapsulation process due to substantial hybridization between the cobalt cluster and the Si30C30 nanocage structure, although the encaged Co2 cluster presented somewhat different behavior. It was found that significant magnetic moments are induced in the wall of the nanocage, and that Con@Si30C30 presents higher total magnetic moments than Con@C60.

Keywords

Magnetic moment Transition metal Clusters 

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smally RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  2. 2.
    Lou L, Nordlander P (1994) An endohedral metallocarbohedrene C@Ti8C12*. Chemical Phys Lett 224:439–444CrossRefGoogle Scholar
  3. 3.
    Jackson K, Nellermoe B (1996) Zr@Si20: a strongly bound Si endohedral system. Chem Phys Lett 254:249–256CrossRefGoogle Scholar
  4. 4.
    Chistyakov AL, Stankevich IV (2000) Endohedral analogs of ferrocene: ab initio theoretical predictions. J Org Met Chem 599:18–27CrossRefGoogle Scholar
  5. 5.
    Guo T, Diener MD, Chai Y, Alford MJ, Haufler RE, McClure SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Uranium stabilization of C28—a tetravalent fullerene. Science 257:1661–1664Google Scholar
  6. 6.
    Funasaka H, Sugiyama K, Yamamoto K, Takahashi T (1995) Synthesis of actinide carbides encapsulated within carbon nanoparticles. J Appl Phys 78:5320–5324CrossRefGoogle Scholar
  7. 7.
    Oku T, Suganuma K (2001) High-resolution electron microscopy and structural optimization of C36, B36N36 and Fe@B36N36 clusters. Diamond Relat Mater 10:1205–1209CrossRefGoogle Scholar
  8. 8.
    Oku T, Kuno M, Narita I (2002) High-resolution electron microscopy and electronic structures of endohedral La@B36N36 clusters. Diamond Relat Mater 11:940–944CrossRefGoogle Scholar
  9. 9.
    Bezi Javan M, Tajabor N (2012) Structural, electronic and magnetic properties of Fen@C60 and Fen@C80 (n = 2–7) endohedral metallofullerene nano-cages: first principles study. J Magn Magn Mater 324:52–59Google Scholar
  10. 10.
    Bezi Javan M, Tajabor N, Rezaee-Roknabadi M, Behdani M (2011) First principles study of small cobalt clusters encapsulated in C60 and C82 spherical nanocages. Appl Surf Sci 257:7586–7591CrossRefGoogle Scholar
  11. 11.
    Bezi Javan M, Tajabor N, Rezaee Roknabadi M, Behdani M (2011) First principles calculations of C70 fullerene nano-cage doped with transition metal atoms (Fe, Co). Physica E 43:1351–1359CrossRefGoogle Scholar
  12. 12.
    Bezi Javan M, Tajabor N, Behdani M, Rezaee Rokn-Abadi M (2010) Influence of 3d transition metals (Fe, Co) on the structural, electrical and magnetic properties of C60 nano-cage. Physica B 405:4937–4942CrossRefGoogle Scholar
  13. 13.
    Shu CY, Gan LH, Wang CR, Pei XL, Han HB (2006) Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon 44:496–500CrossRefGoogle Scholar
  14. 14.
    Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Metallofullerene drug design. Coord Chem Rev 190:199–207CrossRefGoogle Scholar
  15. 15.
    Song LC, Yu GA, Hu QM, Che CM, Zhu N, Huang JS (2006) Synthesis and characterization of the first transition-metal fullerene complexes containing bis (η6-benzene) chromium moieties. J Org Met Chem 691:787–792CrossRefGoogle Scholar
  16. 16.
    Song LC, Liu JT, Hu QM (2002) Synthesis and characterization of group 6 transition-metal [70] fullerene derivatives containing dppb ligands.: crystal structure of fac-Mo(CO)3(dppb)(CH3CN). J Org Met Chem 662:51–58Google Scholar
  17. 17.
    Sakai S, Naramoto H, Avramov PV, Yaita T, Lavrentiev V, Narumi K, Baba Y, Maeda Y (2007) Comparative study of structures and electrical properties in cobalt–fullerene mixtures by systematic change of cobalt content. Thin Solid Films 515:7758–7764CrossRefGoogle Scholar
  18. 18.
    Eda Y, Itoh K, Ito YN, Kawato T (2009) 2,6-Bis(porphyrin)-substituted pyrazine: a new class of supramolecular synthon binding to a transition-metal ion and fullerene (C60). Tetrahedron 65:282–288CrossRefGoogle Scholar
  19. 19.
    Balch AL, Catalano VJ, Costa DA, Fawcett WR, Federco M, Ginwalla AS, Lee JW, Olmstead MM, Noll BC, Winkler K (1997) Transition metal fullerene chemistry: the route from structural studies of exohedral adducts to the formation of redox active films. J Phys Chem Solids 58:1633–1643Google Scholar
  20. 20.
    Han WQ, Redlich P, Ernst F, Rühle M (1999) Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Appl Phys Lett 75:1875–1878CrossRefGoogle Scholar
  21. 21.
    Ma RZ, Bando Y, Sato T (2001) Coaxial nanocables: Fe nanowires encapsulated in BN nanotubes with intermediate C layers. Chem Phys Lett 350:1–5CrossRefGoogle Scholar
  22. 22.
    Cho WJ, Kosugi R, Senzaki J, Fukuda K, Arai K, Suzuki S (2000) Study on electron trapping and interface states of various gate dielectric materials in 4H–SiC metal-oxide-semiconductor capacitors. Appl Phys Lett 77:2054–2057CrossRefGoogle Scholar
  23. 23.
    Zhang J, Sugioka K, Wada S, Tashiro H, Toyoda K, Midorikawa K (1998) Precise microfabrication of wide band gap semiconductors (SiC and GaN) by VUV–UV multiwavelength laser ablation. Appl Surf Sci 127:793–799CrossRefGoogle Scholar
  24. 24.
    Dolgaev SI, Lyalin AA, Shafeev GA, Voronov VV (1996) Fast etching and metallization of SiC ceramics with copper-vapor-laser radiation. Appl Phys A 63:75–79CrossRefGoogle Scholar
  25. 25.
    Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471Google Scholar
  26. 26.
    Seeger T, Redlich P, Ruhle M (2000) Synthesis of nanometer-sized SiC whiskers in the arc-discharge. Adv Mater 12:279–282Google Scholar
  27. 27.
    Lu Q, Hu J, Tang K, Qian Y (1999) Growth of SiC nanorods at low temperature. Appl Phys Lett 75:507–510CrossRefGoogle Scholar
  28. 28.
    Pochet P, Genovese L, Caliste D, Rousseau I, Goedecker S, Deutsch T (2010) First-principles prediction of stable SiC cage structures and their synthesis pathways. Phys Rev B 82:035431–035437CrossRefGoogle Scholar
  29. 29.
    Bezi Javan M (2013) Optical properties of SiC nanocages: ab initio study. Appl Phys A 113:105–113CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868Google Scholar
  31. 31.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  32. 32.
    Ozaki T (2003) Variationally optimized atomic orbitals for large-scale electronic structures. Phys Rev B 67:155108–155113CrossRefGoogle Scholar
  33. 33.
    Ozaki T, Kino H (2004) Numerical atomic basis orbitals from H to Kr. Phys Rev B 69:195113–195132CrossRefGoogle Scholar
  34. 34.
    Ozaki T, Kino H (2005) Efficient projector expansion for the ab initio LCAO method. Phys Rev B 72:045121–045129CrossRefGoogle Scholar
  35. 35.
    Kant A, Strauss B (1964) Dissociation energies of diatomic molecules of the transition elements. II. Titanium, chromium, manganese, and cobalt. J Chem Phys 41:3806–3819Google Scholar
  36. 36.
    Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A (2007) Structure, bonding, and magnetism of cobalt clusters from first-principles calculations. Phys Rev B 76:014429–014440CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Physics Department, Faculty of SciencesGolestan UniversityGorganIran

Personalised recommendations